首页 | 本学科首页   官方微博 | 高级检索  
     


On Some Properties of Humanly Known and Humanly Knowable Mathematics
Authors:Jason L. Megill  Tim Melvin  Alex Beal
Affiliation:1. Department of Philosophy, Carroll College, Helena, MT, USA
4. 1803 Poplar Street, Helena, MT, 59601, USA
2. Department of Mathematics, Carroll College, Helena, MT, USA
3. Gnip, Boulder, CO, USA
Abstract:We argue that the set of humanly known mathematical truths (at any given moment in human history) is finite and so recursive. But if so, then given various fundamental results in mathematical logic and the theory of computation (such as Craig’s in J Symb Log 18(1): 30–32(1953) theorem), the set of humanly known mathematical truths is axiomatizable. Furthermore, given Godel’s (Monash Math Phys 38: 173–198, 1931) First Incompleteness Theorem, then (at any given moment in human history) humanly known mathematics must be either inconsistent or incomplete. Moreover, since humanly known mathematics is axiomatizable, it can be the output of a Turing machine. We then argue that any given mathematical claim that we could possibly know could be the output of a Turing machine, at least in principle. So the Lucas-Penrose (Lucas in Philosophy 36:112–127, 1961; Penrose, in The Emperor’s new mind. Oxford University Press, Oxford (1994)) argument cannot be sound.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号