首页 | 本学科首页   官方微博 | 高级检索  
     


A selectionist approach to reinforcement.
Authors:J W Donahoe   J E Burgos     D C Palmer
Abstract:We describe a principle of reinforcement that draws upon experimental analyses of both behavior and the neurosciences. Some of the implications of this principle for the interpretation of behavior are explored using computer simulations of adaptive neural networks. The simulations indicate that a single reinforcement principle, implemented in a biologically plausible neural network, is competent to produce as its cumulative product networks that can mediate a substantial number of the phenomena generated by respondent and operant contingencies. These include acquisition, extinction, reacquisition, conditioned reinforcement, and stimulus-control phenomena such as blocking and stimulus discrimination. The characteristics of the environment-behavior relations selected by the action of reinforcement on the connectivity of the network are consistent with behavior-analytic formulations: Operants are not elicited but, instead, the network permits them to be guided by the environment. Moreover, the guidance of behavior is context dependent, with the pathways activated by a stimulus determined in part by what other stimuli are acting on the network at that moment. In keeping with a selectionist approach to complexity, the cumulative effects of relatively simple reinforcement processes give promise of simulating the complex behavior of living organisms when acting upon adaptive neural networks.
Keywords:reinforcement  selectionism  neural networks  evolution  interpretation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号