首页 | 本学科首页   官方微博 | 高级检索  
     

基于作答数据的模型参数和Q矩阵联合估计
引用本文:喻晓锋,罗照盛,秦春影,高椿雷,李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282. DOI: 10.3724/SP.J.1041.2015.00273
作者姓名:喻晓锋  罗照盛  秦春影  高椿雷  李喻骏
作者单位:(;1.江西师范大学心理学院, 南昌 330022) (;2.亳州师范高等专科学校, 亳州 236800)
基金项目:国家自然科学基金,国家社会科学基金,教育部人文社会科学研究青年基金项目,安徽省高校省级优秀青年人才基金重点项目,安徽省自然科学研究项目,高等学校博士学科点专项科研基金,江西省研究生创新专项基金,安徽省哲学社会科学规划项目(AHSKY2014D102)资助。
摘    要:Q矩阵在认知诊断的模型参数估计和诊断分类中起着重要作用。本文通过研究Liu等人的方法, 设计了同时估计项目参数和Q矩阵的联合估计算法。在DINA模型下, 对项目参数未知时开展模拟研究。研究假设项目为20个, 考察的属性个数分别是3、4和5, 初始Q矩阵中分别存在3、4和5个属性界定错误的项目。结果表明, 联合估计算法能在错误的初始Q矩阵基础上以很高的概率得到正确的Q矩阵。另外, 当专家认定测验的属性个数存在错误时, 该方法推导的Q矩阵和模型参数能提供很好的鉴别Q矩阵错误的信息。

关 键 词:认知诊断评价   Q矩阵  T矩阵   联合估计   DINA模型  
收稿时间:2014-09-22

Joint Estimation of Model Parameters and Q-Matrix Based on Response Data
YU Xiaofeng,LUO Zhaosheng,QIN Chunying,GAO Chunlei,LI Yujun. Joint Estimation of Model Parameters and Q-Matrix Based on Response Data[J]. Acta Psychologica Sinica, 2015, 47(2): 273-282. DOI: 10.3724/SP.J.1041.2015.00273
Authors:YU Xiaofeng  LUO Zhaosheng  QIN Chunying  GAO Chunlei  LI Yujun
Affiliation:(;1. School of Psychology, Jiangxi Normal University, Nanchang 330022, China) (;2. Computer Department, Bozhou Normal College, Bozhou 236800, China)
Abstract:Q-matrix is an important component of cognitive diagnostic assessment, which represents the item-attribute relationships. Cognitive diagnostic assessment infers attribute mastery patterns of respondents in the testing field based on item responses. Item responses in the assessment are observable, but respondents attribute mastery patterns are potential, not observable. Q-matrix plays the role of a bridge in cognitive diagnostic assessment. Therefore, Q-matrix impact the accuracy of cognitive diagnostic assessment greatly. Research on the effect of parameter estimation and classification accuracy caused by the error in Q-matrix already existed, and it turned out that Q-matrix gotten from expert definition or experience was more easily subject to be affected by subjective factors, lead to a misspecified Q-matrix. Under this circumstance, it’s urgently needed to find more objective Q-matrix inference methods. This paper started from this consideration, carried out further research on the Q-matrix inference from response data based on the research of Liu, Xu and Ying (2012), and modified the Liu et al. algorithm, designed a joint estimate item parameters and Q-matrix algorithm. The joint estimate algorithm can estimate item parameters and the Q-matrix simultaneously. In simulations, considered different Q-matrix (attribute-number is 3,4 and 5), different sample size (500, 1000, 2000 and 4000), different number of error items (3,4 and 5), the attribute mastery pattern of the sample followed an uniform distribution, and the item parameters followed an uniform distribution with interval [0.05,0.25]. When item parameters were unknown, item number was 20, and item attributes was 3, 4 or 5, based on the initial Q-matrix, and the joint estimate algorithm can get the true Q-matrix with a high probability and item parameters with small deviation, even the sample size is relatively small (such as 300), and the misspecified-item number is relatively large (such as 6). Furthermore, when the number of item attribute was misspecified by experts, in other words, the Q-matrix lacked a required attribute or added a redundant attribute, this would lead to incorrectness of all items, and the joint estimate algorithm will provide reliable information to infer the true Q-matrix. The results indicated that: (1) The joint estimate algorithm had a good performance and suitable for practical application when some item attribute vectors misspecified. (2) The joint estimate algorithm could provide useful information when added a redundant attribute or lacked a required attribute in Q-matrix, and then amended and estimated the Q-matrix.
Keywords:cognitive diagnostic assessment  Q-matrix  T-matrix  joint estimate  DINA model
本文献已被 CNKI 等数据库收录!
点击此处可从《心理学报》浏览原始摘要信息
点击此处可从《心理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号