首页 | 本学科首页   官方微博 | 高级检索  
     


A Neural Network Model for Attribute-Based Decision Processes
Authors:Marius Usher  Dan Zakay
Abstract:We propose a neural model of multiattribute-decision processes, based on an attractor neural network with dynamic thresholds. The model may be viewed as a generalization of the elimination by aspects model, whereby simultaneous selection of several aspects is allowed. Depending on the amount of synaptic inhibition, various kinds of scanning strategies may be performed, leading in some cases to vacillations among the alternatives. The model predicts that decisions of a longer time duration exhibit a lower violation of the simple scalability law, as opposed to shorter decisions. Furthermore, the model is suggested as a general attribute-based decision module. Accordingly, various decision strategies are manifested depending on the module's parameters.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号