首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  国内免费   2篇
  2023年   2篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2016年   1篇
  2014年   1篇
  2013年   25篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
An operant model of foraging was studied. Rats searched for food by pressing on the left lever, the patch, which provided one, two, or eight reinforcers before extinction (i.e., zero reinforcers). Obtaining each reinforcer lowered the probability of receiving another reinforcer, simulating patch depletion. Rats traveled to another patch by pressing the right lever, which restored reinforcer availability to the left lever. Travel requirement changed by varying the probability of reset for presses on the right lever; in one condition, additional locomotion was required. That is, rats ran 260 cm from the left to the right lever, made one response on the right lever, and ran back to a fresh patch on the left lever. Another condition added three hurdles to the 260-cm path. The lever-pressing and simple locomotion conditions generated equivalent travel times. Adding the hurdles produced longer times in patches than did the lever-pressing and simple locomotion requirements. The results contradict some models of optimal foraging but are in keeping with McNair's (1982) optimal giving-up time model and add to the growing body of evidence that different environments may produce different foraging strategies.  相似文献   
2.
3.
The present experiment examined the effects of acute and daily cocaine on spontaneous behavior patterns of pigeons. After determining the acute effects of a range of doses, 9 pigeons were divided into three groups that received one of three doses of cocaine daily, either 1.0, 3.0, or 10.0 mg/kg cocaine. Measures were taken of spontaneous locomotion, pecking, preening, and emesis. Under daily administration, cocaine induced consistent and substantial enhancements of its locomotor effects in all 9 pigeons, consistent with the phenomenon of locomotor sensitization. The maximum locomotor output did not differ according to the size of the daily dose. Locomotion was not elevated following tests of the saline vehicle, suggesting the effect was due to cocaine, not to a change in baseline or reactivity to the injection procedure. Cocaine dose‐dependently decreased preening when given acutely, and those effects were not altered by repeated cocaine administration. Pecking occurred at very low rates and was unresponsive to cocaine treatment. Cocaine‐induced emesis showed a dose‐dependent increase under initial tests with cocaine, and those effects were attenuated following daily exposure. In a final condition, cocaine was replaced with daily saline for 30 days to assess the persistence cocaine‐related increases in locomotion. Approximately half of the pigeons continued to show enhanced effects even after 30 days without cocaine, so although persistence was obtained, it showed marked intersubject variability. The data indicate that the effects of repeated cocaine administration on the behavior of pigeons shows parallels with many effects commonly reported with rodents (i.e., increased locomotion following repeated treatment, decrease in preening or grooming, persistence following drug withdrawal).  相似文献   
4.
In the present study, 2 related hypotheses were tested: first, that vision is used in a feedforward control mode during precision stepping onto visual targets and, second, that the oculomotor and locomotor control centers interact to produce coordinated eye and leg movements during that task. Participants' (N = 4) eye movements and step cycle transition events were monitored while they performed a task requiring precise foot placement at every step onto irregularly placed stepping stones under conditions in which the availability of visual information was either restricted or intermittently removed altogether. Accurate saccades, followed by accurate steps, to the next footfall target were almost always made even when the information had been invisible for as long as 500 ms. Despite delays in footlift caused by the temporary removal (and subsequent reinstatement) of visual information, the mean interval between the start of the eye movement and the start of the swing toward a target did not vary significantly (p > .05). In contrast, the mean interval between saccade onset away from a target and a foot landing on that target (stance onset) did vary significantly (p < .05) under the different experimental conditions. Those results support the stated hypotheses.  相似文献   
5.
This article describes developmental changes in gait velocity and relates these changes to gait parameters that index postural stability (step width and lateral acceleration) and two components of velocity (cadence and step length).

Five children were observed longitudinally over a 2-year period after onset of independent walking. Their range of speed increased threefold in the first 6 months of independent walking and then remained constant. In contrast, step width decreased approximately twofold. Whereas in adults, cadence and step length contribute approximately equally to speed, when infants first begin to walk independently, increase in velocity is due mostly to increased step length. After 5 months of independent walking, the pattern reverses, and increase in velocity is due primarly to increased cadence. The pattern remains constant over the next 18 months. From a developmental point of view, the data lead us to interpret early walking (the first 5 months) as a process of integration of postural constraints into the dynamic necessities of gait movement. A second phase, beginning after 4 to 5 months of independent walking, is considered to be a tuning phase characterized by a more precise adjustment of the gait parameters.  相似文献   
6.
Exposure to a microgravity environment leads to adverse effects in motion and musculoskeletal properties. However, few studies have investigated the recovery of altered locomotion and muscle atrophy simultaneously. The authors investigated altered locomotion in rats submitted to simulated microgravity by hindlimb unloading for 2 weeks. Motion deficits were characterized by hyperextension of the knees and ankle joints and forward-shifted limb motion. Furthermore, these locomotor deficits did not revert to their original form after a 2-week recovery period, although muscle atrophy in the hindlimbs had recovered, implying discordance in recovery between altered locomotion and muscle atrophy, and that other factors such as neural drives might control behavioral adaptations to microgravity.  相似文献   
7.
The present study compared how well four modes of action control (intentional, habitual, reactive and stereotype activation) explain adolescents’ cigarette smoking, and examined whether individual differences in self-regulation (locomotion and assessment tendencies; Higgins, Kruglanski, & Pierro, 2003 Higgins, ET, Kruglanski, AW and Pierro, A. 2003. Regulatory mode: Locomotion and assessment as distinct orientations. Advances in Experimental Social Psychology, 25: 293344.  [Google Scholar]) moderate the behavioural impact of the respective modes. Findings from a prospective questionnaire survey showed that (a) willingness, prototype perceptions and past behaviour–but not intention–predicted smoking behaviour, and explained 63% of the variance, and (b) the assessment mode of self-regulation moderated the past behaviour–future behaviour relation such that past behaviour had less impact on future smoking behaviour at high levels of assessment. These findings suggest that adolescents’ smoking is controlled by stereotype activation, habitual and reactive processes. Implications of the results for designing effective adolescent smoking cessation programmes are considered.  相似文献   
8.
The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters – step length, foot placement, and foot strike pattern – are adjusted in response to encountering a typical urban obstacle – a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p < 0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run.  相似文献   
9.
What incites infant locomotion? Recent research suggests that locomotor exploration is not primarily directed toward distant people, places, or things. However, this question has not been addressed experimentally. In the current study, we asked whether a room filled with toys designed to encourage locomotion (stroller, ball, etc.) elicits different quantities or patterns of exploration than a room with no toys. Caregivers were present but did not interact with infants. Although most walking bouts in the toy‐filled room involved toys, to our surprise, 15‐month‐olds in both rooms produced the same quantity of locomotion. This finding suggests that mere space to move is sufficient to elicit locomotion. However, infants' patterns of locomotor exploration differed: Infants in the toy‐filled room spent a smaller percent of the session within arms' reach of their caregiver and explored more locations in the room. Real‐time analyses show that infants in the toy‐filled room took an increasing number of steps per bout and covered more area as the session continued, whereas infants in the no‐toy room took fewer and fewer steps per bout and traveled repeatedly over the same ground. Although not required to elicit locomotion, moving with toys encouraged infants to travel farther from their caregivers and to explore new areas.  相似文献   
10.
This study investigated how infants gather information about their environment through looking and how that changes with increases in motor skills. In Experiment 1, 9.5- and 14-month-olds participated in a 10-min free play session with both a stranger and ambiguous toys present. There was a significant developmental progression from passive to active social engagement, as evidenced by younger infants watching others communicate more and older infants making more bids for social interaction. Experiment 2 examined longitudinally the impact of age and walking onset on this progression. The transition to independent walking marked significant changes in how often infants watched others communicate and made active bids for social interaction. Results suggest that infants transition from passive observers as crawlers to active participants in their social environment with the onset of walking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号