首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
  国内免费   5篇
  2020年   9篇
  2019年   8篇
  2018年   5篇
  2017年   12篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   35篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
1.
Abstract

Optic flow (OF) has been utilized to investigate the sensory integration of visual stimuli during postural control. It is little known how the OF speed affects the aging brain during the sensory integration process of postural control. This study was to examine the effect of OF speeds on the brain activation using functional near-infrared spectroscopy (fNIRS) and postural sway between younger and older adults. Eleven healthy younger adults (5M/6F, age 22?±?1-year-old) and ten healthy older adults (4M/6F, age 71?±?5-year-old) participated in this study. A virtual reality headset was used to provide the OF stimulus at different speeds. A forceplate was used to record the center-of-pressure to compute the amplitude of postural sway (peak-to-peak). Compared with younger adults, older adults showed significantly increased activation in the OF speed of 10?m/s and decreased activation in the OF speed of 20?m/s in the left dorsolateral prefrontal cortex. Older adults also showed decreased activation in the left temporoparietal region (VEST) in the OF speed of 20?m/s. A significant difference in peak-to-peak was found between groups. Our results indicated that age might be associated with the ability to process fast OF stimulation.  相似文献   
2.
The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention.Twenty-eight children with BP and 20 TD-children participated in the study. Motor performance was assessed with the Movement Assessment Battery for Children (MABC2), three subtests of the Bruininks Oseretsky Test (BOT2): Bilateral Coordination, Balance and Running Speed & Agility, and a Wii Fit ski slalom test. The TD children and half of the children in the BP group were tested before and after a 6 weeks non-intervention period. All children with BP received 6 weeks of Wii Fit intervention (with games other than the ski game) and were tested before and afterwards.Children with BP were less proficient than TD children in playing the Wii Fit ski slalom game. Training with the Wii Fit improved their motor performance. The improvement was significantly larger after intervention than after a period of non-intervention. Therefore the change cannot solely be attributed to spontaneous development or test–retest effect. Nearly all children enjoyed participation during the 6 weeks of intervention. Our study shows that Wii Fit intervention is effective and is potentially a method to support treatment of (dynamic) balance control problems in children.  相似文献   
3.
The authors sought to investigate if short-term gaze stability exercises have an effect on postural stability of dynamic standing during neck movement in patients with posterior circulation stroke (PCS). Patients in both PCS and non-PCS groups were assigned to either an intervention or control group. The intervention group performed the gaze stability exercises for 10 min while the control group was merely resting. The center of pressure velocity was calculated to evaluate the postural stability. After intervention, PCS and non-PCS showed a significant reduction in center of pressure velocity during dynamic standing with eyes closed condition, and the PCS group showed a significant improvement in eye-opened condition. This study indicated that gaze stability exercises improve PCS patients' postural control, especially during dynamic standing.  相似文献   
4.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi—BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   
5.
Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.  相似文献   
6.
The authors examined and compared the effect of support-surface perturbations of various magnitudes on lower extremity kinetics of 7 children with cerebral palsy (CP) and 8 typically developing (TD) children. Results showed that the highest velocity tolerated without stepping was slower in children with CP than in either age-matched TD or younger TD children. Multimodal torque profiles were more frequent in children with CP than in TD controls. TD groups temporally and spatially organized torque activation, whereas children with CP activated all joints simultaneously and showed altered torque contribution patterns among joints. Those results suggest that impairments in reactive postural control in children with CP result not only from developmental delay but also from pathology. Evidence for pathology included increased numbers of torque bursts required to regain stability and less efficient temporal and spatial organization of torque activation patterns.  相似文献   
7.
As a pre-requisite to curriculum development, the characteristics of the gross motor performance of special education classes of minimally brain injured boys and girls were described. In general, age changes in mean performance were linear, the scores of the boys being the superior. The level of performance very closely resembled that of comparison groups of educable mentally retarded children from the same school districts.  相似文献   
8.
Displacing an object with a hand-held rod provided a simple paradigm for studying tool use. The authors asked how reaching was affected by manipulations of rod properties. Adults held a rod (length = .10 to 1.5 m), with its tip in the air; walked toward an object on a table; chose a place to stop; and displaced the object with the rod's tip. In 3 experiments (Ns = 9, 22, and 17 participants), the authors manipulated rod length, mass, and mass distribution to determine whether and how geometric and dynamic properties affected the chosen distance and the posture. Both the chosen stopping distance and the postures were well accommodated to rod characteristics. Postural adaptations took place only in the arm, which was organized as a synergy. Predictably, rod length explained most of the variance, but small and reliable differences in both distance and posture depended on mass and mass distribution. The chosen distance anticipated not only rod length but also the upcoming posture needed to control the rod.  相似文献   
9.
Medialateral postural control mechanisms (bodyweight distribution and center of pressure location) have been studied in static conditions. Our objective was to determine how these mechanisms are adjusted to perform voluntary movements, in our case 80° lateral gaze shifts at 0.125 Hz and 0.25 Hz. In healthy, young adults, we expected body marker (neck, lower back) and center of pressure displacements to be significantly greater in gaze shift conditions than in the stationary gaze condition. To explain these changes in center of pressure displacement, the amplitude contribution of both mechanisms was expected to increase significantly. All these results were found accordingly. Unexpectedly, the active contribution of the bodyweight distribution mechanism was negatively related to body marker displacements in the gaze shift conditions (ns in stationary condition). Moreover, changes in the contribution of the mechanisms were statistically weaker in effect size than changes in body displacement. However, the participants were not unstable because they performed the visual tasks as requested. We propose that the strength of medialateral postural control mechanisms may not only be strengthened to control challenging ML stance conditions but also slightly weakened to allow the performance of adequate body motions in ongoing tasks.  相似文献   
10.
ObjectivesTo assess the effects of voluntarily reducing postural sway on postural control and to determine the attention level needed to do so in healthy adults (n = 16, 65.9 ± 9.7) and persons with PD (n = 25, 65.8 ± 9.5 years). Tasks: quiet and still standing conditions with and without a category task. Cognitive performance, center of pressure (CoP) displacement variability (RMSCoP) and velocity (VCoP) were assessed in the anterior-posterior (AP) and medial-lateral (ML) directions.Controls showed larger RMSCoP (AP) and VCoP (AP and ML) during still versus quiet standing (p < 0.01), while the PD group demonstrated no changes. In the PD group, RMSCoP and VCoP (ML) increased in still standing when performed with the cognitive task (p < 0.05). In both groups, cognitive responses decreased in still standing (p < 0.05).In PD, attempting to reduce postural sway did not affect postural control under single task conditions, however ML CoP variability and velocity did increase as a dual task. In older adults, increased displacement and velocity in both AP and ML directions was observed during single, but not dual task conditions. Therefore standing still might not be an adequate postural strategy as it increases the attentional demand and affects motor performance, putting persons with PD at greater risk for falls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号