首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   3篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
In single-case research, multiple-baseline (MB) design provides the opportunity to estimate the treatment effect based on not only within-series comparisons of treatment phase to baseline phase observations, but also time-specific between-series comparisons of observations from those that have started treatment to those that are still in the baseline. For analyzing MB studies, two types of linear mixed modeling methods have been proposed: the within- and between-series models. In principle, those models were developed based on normality assumptions, however, normality may not always be found in practical settings. Therefore, this study aimed to investigate the robustness of the within- and between-series models when data were non-normal. A Monte Carlo study was conducted with four statistical approaches. The approaches were defined by the crossing of two analytic decisions: (a) whether to use a within- or between-series estimate of effect and (b) whether to use restricted maximum likelihood or Markov chain Monte Carlo estimations. The results showed the treatment effect estimates of the four approaches had minimal bias, that within-series estimates were more precise than between-series estimates, and that confidence interval coverage was frequently acceptable, but varied across conditions and methods of estimation. Applications and implications were discussed based on the findings.  相似文献   
2.
Abstract— A commonly used method for comparing groups of individuals is the analysis of variance (ANOVA) F test. When the assumptions underlying the derivation of this test are true, its power, meaning its probability of detecting true differences among the groups, competes well with all other methods that might be used. But when these assumptions are false, its power can be relatively low. Many new statistical methods have been proposed—ones that are aimed at achieving about the same amount of power when the assumptions of the F test are true but which have the potential of high power in situations where the F test performs poorly. A brief summary of some relevant issues and recent developments is provided. Some related issues are discussed and implications for future research are described.  相似文献   
3.
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.  相似文献   
4.
Using a standard repeated measures model with arbitrary true score distribution and normal error variables, we present some fundamental closed-form results which explicitly indicate the conditions under which regression effects towards (RTM) and away from the mean are expected. Specifically, we show that for skewed and bimodal distributions many or even most cases will show a regression effect that is in expectation away from the mean, or that is not just towards but actually beyond the mean. We illustrate our results in quantitative detail with typical examples from experimental and biometric applications, which exhibit a clear regression away from the mean (‘egression from the mean’) signature. We aim not to repeal cautionary advice against potential RTM effects, but to present a balanced view of regression effects, based on a clear identification of the conditions governing the form that regression effects take in repeated measures designs.  相似文献   
5.
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., xy vs. yx), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号