首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  国内免费   5篇
  2021年   6篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   18篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2002年   4篇
  2000年   3篇
  1997年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
创造力究竟是怎么产生的, 目前尚未得出一致的结论。神经电生理技术因其高时间分辨率, 可以准确地揭示创造力产生进程中的神经振荡机制, 从而帮助人们更深刻地理解创造力的本质。近年来的研究发现, 单节律alpha神经振荡会随着创造力的增加而增强, 这反映了创造力产生过程中的内部信息加工需求增加、自上而下的抑制控制增强。同时, 多频段神经振荡交叉节律耦合体现了创造性产生过程中额叶、颞叶和顶叶等多脑区之间信息交流的动态变化。未来研究应该以整合理论框架为基础, 结合多层次多方法的研究工具, 引进更生态化的数理计算方法, 并利用计算神经科学建模来预测个体创造力发展趋势, 从而全面深刻地认识创造力的本质。  相似文献   
2.
Integrity of both cerebral hemispheres is required to control in-phase or anti-phase coupling of ipsilateral hand and foot oscillations, as shown by the impairment of these tasks when performed on the healthy side of hemiplegic patients. On this basis, coupling of hand–foot movements was analysed in a right-handed subject (ME) who underwent a total resection of the corpus callosum. Oscillations of the prone hand and foot, paced by a metronome at different frequencies, as well as EMG activity in extensor carpi radialis (ECR) and tibialis anterior (TA) muscles were analysed by measuring the average phase difference between the hand and foot movements and EMG cycles.

ME performed in-phase movements (right-hand extension coupled to right-foot dorsal flexion) at frequencies up to 3 Hz, though the hand cycle progressively lagged the foot cycle as the frequency increased. At 3 Hz the hand lag reached −142° (as compared to about 25° in healthy subjects). The lag increased even further after application of an inertial load to the hand, reaching 180° at 1.8 Hz (about 50° in healthy subjects). ME's hand lag is caused by the lack of any anticipatory reaction in hand movers. In contrast to healthy subjects, which activate the ECR earlier than the TA when the frequency increases, ME activated the ECR later than TA at all frequencies higher than 0.9 Hz.

Anti-phase movements (hand extension coupled to foot plantar flexion) were performed only upto 1 Hz in unloaded conditions. At 0.6 Hz, movements were in tight phase-opposition (3°), but at 1 Hz, the hand lag reached −34° because of a delayed ECR activation. After hand loading ME was unable to couple movements in anti-phase. In contrast, normal subjects maintain a tight anti-phase coupling up to 2.0 Hz, both with an unloaded or loaded hand. Similar deficits were observed by ME when performing in-phase and anti-phase coupling on the left side, as well as when he was blindfolded.

In normal subjects, an anticipated muscular activation of hand movers compensates for hand loading. Since this compensation must depend on monitoring the hand delay induced by loading, the absence in ME of such compensatory reaction suggests that callosal division had apparently compromised the mechanisms sustaining feedback compensation for differences in the biomechanical limb properties. They also confirm and reinforce the idea that elaboration of the afferent message, aiming at controlling the phase of the movement association, needs the co-operation of both cerebral hemispheres.  相似文献   

3.
In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.  相似文献   
4.
The authors investigated the relation between hand kinematics and eye movements in 2 variants of a rhythmical Fitts's task in which eye movements were necessary or not necessary. P. M. Fitts's (1954) law held in both conditions with similar slope and marginal differences in hand-kinematic patterns and movement continuity. Movement continuity and eye—hand synchronization were more directly related to movement time than to task index of difficulty. When movement time was decreased to fewer than 350 ms, eye—hand synchronization switched from continuous monitoring to intermittent control. The 1:1 frequency ratio with stable π/6 relative phase changed for 1:3 and 1:5 frequency ratios with less stable phase relations. The authors conclude that eye and hand movements in a rhythmical Fitts's task are dynamically synchronized to produce the best behavioral performance.  相似文献   
5.
The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.  相似文献   
6.
The authors ran 3 experiments to investigate how catchers deal with the horizontal component of the ball's trajectory in an interception task during locomotion. The experiments were built upon the finding that velocity adaptations are based upon changes in the horizontal angular position or velocity of the ball with respect to the observer (M. Lenoir, M. Janssens, E. Musch, E. Thiery, & J. Uyttenhove, 1999); a potential underlying information source for that strategy is described. In Experiment 1, actor (N = 10 participants) and ball approached each other along the legs of a V-shaped track. When the velocity and the initial angular bearing of the ball were varied, the observed behavior fitted with nulling the horizontal angular velocity of the ball: A positive or negative angular velocity was compensated by a velocity change. Evidence was obtained that those adaptations are modulated by a critical change in, rather than by a critical state of, the environment-actor system. In Experiment 2, the distance between the head and an artificial end-effector was varied. Irrespective of that distance, participants (N = 7) accelerated and decelerated in order to keep the angular velocity of the ball with respect to the end-effector close to constant. The ecological relevance of that constant bearing angle strategy was confirmed in Experiment 3: Participants (N = 7) in that experiment freely ran to catch fly balls. The present results support the concept that one can explain with a limited number of control variables an actor's behavior in an interception task during self-motion.  相似文献   
7.
Review     
《Zygon》2002,37(4):985-990
Book reviewed in this article:
David Ray Griffin, Religion and Scientific Naturalism: Overcoming the Conflicts  相似文献   
8.
Adaptations in lower limb movement patterns were examined when performance was maintained during a fatiguing repetitive loading task. Forty recreationally active male and female participants performed single-leg hopping to volitional exhaustion at 2.2 Hz to a submaximal height. Spatio-temporal characteristics, mechanical characteristics and variability of the knee-ankle and hip-knee joint couplings were determined at 20% increments during the duration of the hopping task. Variability of the knee-ankle and hip-knee couplings in the flexion/extension axis significantly increased during the loading and propulsion phases during the hopping task (p < 0.05). Performance (vertical stiffness, hopping frequency and height) did not change significantly during the task (p > 0.05), however foot contact time increased progressively during this task (p < 0.05) and maximum hop height significantly decreased after the task (p < 0.05). The observed increase in variability between adjoining lower limb segments demonstrated the ability of the neuromotor system to adapt and maintain performance even with the onset of fatigue. This finding highlights that during the performance of a rapid and repetitive loading activity, performance can be preserved when there is variability in the neuromotor system.  相似文献   
9.
The focus and organization of attention in perception-action coupling is systematically examined in two studies involving 9 and 10 -month-old infants engaged in learning goal-directed behaviors. Experiment 1 (discrimination study) observed the influence of an attentionally demanding motor task on learning and cognition, while Experiment 2 (means-ends study) observed the influence of an attentionally demanding goal on motor planning and reaching performance. Taken together the results of these two experiments revealed that when mental processing resources were directed to thinking about movement, discrimination performance became compromised; conversely, when processing resources were directed to thinking about the goal-state, the motor planning and execution became compromised. These results suggest a “spilling forward” of thoughts onto actions and goal-states and thus an attention-driven cognition/action trade-off for infants’ goal-directed actions. Findings highlight the ultimate importance of emerging motor skills on cognition and are contextualized within the on-going dialogues and developmental debates surrounding perceptual-motor skill development and problem-solving strategies during the first year.  相似文献   
10.
Although most research on interpersonal coordination focuses on perceptual forms of interaction, many interpersonal actions also involve interactions of mechanical nature. We examined the effect of mechanical coupling in a rowing task from a coupled oscillator perspective: 16 pairs of rowers rowed on ergometers that were physically connected through slides (mechanical coupling condition) or on separate ergometers (no mechanical coupling condition). They rowed in two patterns (in- and antiphase) and at two movement frequencies (20 and 30 strokes per minute). Seven out of sixteen pairs showed one or more coordinative breakdowns, which only occurred in the antiphase condition. The occurrence of these breakdowns was not affected by mechanical coupling, nor by movement frequency. For the other nine pairs, variability of steady state coordination was substantially lower in the mechanical coupling condition. Together, these results show that the increase in coupling strength through mechanical coupling stabilizes coordination, even more so for antiphase coordination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号