首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
《Brain and cognition》2014,84(3):297-306
Despite often showing behaviorally typical levels of social cognitive ability, unaffected siblings of children with autism spectrum disorder have been found to show similar functional and morphological deficits within brain regions associated with social processing. They have also been reported to show increased activation to biological motion in these same regions, such as the posterior superior temporal sulcus (pSTS), relative to both children with autism and control children. It has been suggested that this increased activation may represent a compensatory reorganization of these regions as a result of the highly heritable genetic influence of autism. However, the response patterns of unaffected siblings in the domain of action perception are unstudied, and the phenomenon of compensatory activation has not yet been replicated. The present study used functional magnetic resonance imaging to determine the neural responses to intentional biological actions in 22 siblings of children with autism and 22 matched controls. The presented actions were either congruent or incongruent with the actor’s emotional cue. Prior studies reported that typically developing children and adults, but not children with autism, show increased activation to incongruent actions (relative to congruent), within the pSTS and dorsolateral prefrontal cortex. We report that unaffected siblings did not show a compensatory response, or a preference for incongruent over congruent trials, in any brain region. Moreover, interaction analyses revealed a sub-region of the pSTS in which control children showed an incongruency preference to a significantly greater degree than siblings, which suggests a localized deficit in siblings. A sample of children with autism also did not show differential activation in the pSTS, providing further evidence that it is an area of selective disruption in children with autism and siblings. While reduced activation to both conditions was unique to the autism sample, lack of differentiation to incongruent and congruent intentional actions was common to both children with ASD and unaffected siblings.  相似文献   
2.
Set-shifting is essential to cognitive flexibility and relies on frontal lobe function. Previous studies have mostly focused on feedback processes following shifting rather than set-shifting itself. We designed an MEG paradigm without feedback to directly investigate the neural correlates of set-shifting. Adults (n = 16) matched one of two coloured images with a third stimulus, the target, by either the colour or shape dimension of the target. Half of the shift trials involved colour-to-colour or shape-to-shape (intra-dimensional: ID) shifting and the other half involved colour-to-shape or shape-to-colour (extra-dimensional: ED) shifting. MEG was continuously recorded on a 151 channel CTF system. We used beamforming to analyze responses to the first (shift) and the third (repeat) trials in each set. These trials were contrasted separately for ID and ED sets. Shift versus repeat trials showed larger MEG activations for intra-dimensional shifting in the right inferior frontal gyrus (BA 47), left medial frontal gyrus (BA 10) and right superior frontal gyrus (BA 9) as early as 100 ms, and in left middle frontal gyrus (BA 11) between 250–500 ms. Activations related to extra-dimensional shifting were detected in left inferior frontal gyrus (BA 44), left middle frontal gyrus (BA 11), and right middle frontal gyrus (BA 46) between 100 ms and 350 ms, followed by superior frontal gyrus (BA 8/BA 10) between 250–500 ms. Intra-dimensional and extra-dimensional shifting also activated bilateral and right parietal areas, respectively. This study establishes the location and timing of frontal and parietal activations during an intra-dimensional versus extra-dimensional shifting task.  相似文献   
3.
周晶  宣宾 《心理科学进展》2018,26(11):1976-1991
抑制控制是执行功能的重要组成部分之一, 研究表明抑制控制与额叶区域的活动有关。经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)是一种非侵入性的脑刺激技术, 可以调节脑区的激活程度。研究表明tDCS刺激额叶的部分区域可以有效干预参与者的抑制控制水平, 而这一干预作用会受到刺激位置、刺激类型以及实验任务等条件变化的影响。目前tDCS已应用于不同人群的抑制控制研究, 并能与其他研究技术较好的结合。  相似文献   
4.
Multitasking is the ability to perform more than one task simultaneously. The need to multitask is common in many industries especially within the military with tasks such as air traffic controllers, cyber defense operators and image analysts. However, as the time on task increases, information throughput can become overwhelming resulting in a performance decrement. Through task prioritizing, the operator is able to maintain performance on specific subtasks in which they selected as high importance while other subtasks experience a decrement. The objective of this study was to evaluate the effects of transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (ldLPFC) on information processing capabilities to improve individual and overall multitasking performance while performing the multi-attribute task battery (MATB). Two groups of 8 participants each received either 2 mA of anodal or sham tDCS while performing MATB. In addition, eye tracking was implemented to record eye movement patterns. In doing so, we were able to determine how much time the operator allocated to each of the subtasks within MATB and how their task priorities changed as workload demands increased. The findings provided evidence that 2 mA of anodal tDCS during MATB significantly improved overall information throughput compared to the sham group. With respect to the individual subtasks, communication and system monitoring displayed the greatest enhancement with anodal tDCS. Our data suggests that tDCS could be a useful tool to enhance information processing capabilities during a multitasking paradigm resulting in improved processing capabilities and information throughput.  相似文献   
5.
Previous research has indicated that individuals respond differently to difficult tasks, depending on whether the situational factors surrounding the task make the individual perceive it as a challenge or a threat. Distinct response patterns between these two stress responses have been identified and vary based on an individual’s personality traits. In keeping with this research, the current study examined how performance pressure-induced threat impacts the relationship between trait approach motivation and prefrontal cortex activation utilizing a simple line bisection task. Participants completed line bisection tasks before and after performing a difficult motor skill task under pressure intended to provoke a threat-based response. As expected, individuals with high levels of trait approach motivation showed a rightward line bisection bias at pretest absent in participants with low levels of trait approach motivation. However, in contrast to previous studies utilizing more challenge-based tasks that report consistent rightward line bisection bias in high approach motivation populations, the current study identified a shift towards a leftward line bisection bias after the study task. The results suggest that the inability to succeed under pressure caused high trait approach participants to temporarily lose their approach orientation due to threat response.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号