首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2016年   1篇
  2015年   2篇
  2013年   7篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Abstract

A new criterion for nucleation in the case of dynamic recrystallization is proposed in order to include the contribution of the grain boundary energy stored in the microstructure in the energy balance. Due to the nucleation events, the total surface area of pre-existing grain boundaries decreases, leading to a nucleus size smaller than expected by conventional nucleation criteria. The new model provides a better prediction of the nucleus size during recrystallization of pure copper compared with the conventional nucleation criterion.  相似文献   
2.
It is known that the binary Cu–2?wt.% Be alloy can be strengthened by ageing its supersaturated solution at 523?K. The increase in the strength arising from ageing is because of the formation of GP zones. The same level of strength is achieved by ageing the supersaturated solid solution of a dilute binary Cu–4?wt.% Ti alloy at 723?K. In contrast to Cu–2?wt.% Be alloy, the increase in strength in this alloy occurs on account of spinodal decomposition of the as-quenched microstructure through the mechanism of clustering and ordering. In the present study, decomposition of a supersaturated solid solution of the ternary Cu–4?wt.% Ti–2?wt.% Be alloy was studied. Whereas ageing of this alloy at 523?K resulted in the formation of GP zones like in a Cu–2?wt.% Be alloy, ageing at 723?K resulted in a spinodally decomposed microstructure as in a Cu–4?wt.% Ti alloy. The decomposition of the ternary alloy at the two temperatures by two different mechanisms indicates that Be and Ti in solution in Cu act, more or less, independently of each other during ageing.  相似文献   
3.
The mechanical softening behaviour of micrometre-scale metals (free-standing metal foils and wires) with decreasing either the geometrical or the microstructural scale (i.e. the smaller, the weaker) has recently been reported. Here, we present a mechanism-based model to understand the softening behaviour, which is based on competition between the effects of surface grain relaxation and the interior grain strengthening effect. The model describes well the yield stress of Cu foils with different ratios of the thickness to grain size.  相似文献   
4.
At the synchrotron facility, Super Photon Ring – 8 GeV, in-situ X-ray diffraction during tensile deformation was conducted on ultrafine-grained Cu with a grain size of about 300 nm fabricated by equal-channel angular pressing. The diffraction profile was observed with the time resolution of about 1 s using multiple MYTHEN detectors, and the diffraction angle and the full-width at half-maximum of some Bragg peaks were determined using the pseudo-Voigt function. From the analysis of Bragg peaks, it was found out that there are microscopically three regions; elastic, plastic and transition regions. The 0.2% proof stress obtained from the stress–strain curve locates within the microscopic transition region. Microstrain was evaluated using the Williamson–Hall method and the dislocation density was also obtained from the microstrain. The dislocation density starts increasing before 0.2% proof stress, which is associated with dislocation bow-out and emission from grain boundaries. The Taylor relationship seems to be still satisfied after 0.2% proof stress.  相似文献   
5.
A multi-mode deformation model is used in a molecular dynamics simulation of nanocrystalline copper. Abundant deformation twin lamellae are developed by shearing the following compression to the elastic limit. Deformation twins (DTs) nucleate through two different mechanisms facilitated by Shockley partial slips. Interactions between DTs and Shockley partials are observed in this simulation.  相似文献   
6.
There is a significant body of literature wherein a linear approximation of Escaig's model is used to justify the large experimentally measured activation-volumes for cross-slip in face-centered-cubic copper. Here, by examining the error between the linear approximation and the original theory, we show that this explanation is not satisfactory. The calculated value for activation volume in copper, using Escaig's original equations, yields ~60b 3 (b?=?Burgers vector) while the linear approximation yields 200b 3, the latter result fortuitously matching the experimental values.  相似文献   
7.
Atom-probe tomography was used to investigate phase separation and copper (Cu) clustering in the ferrite phase of a 25Cr-7Ni super duplex stainless steel. The steel was subjected to a tensile load during aging at 325°C for 5800?h. The degree of phase separation into α (Fe-rich) and α′ (Cr-rich) was small, but still, it was the highest in the steel subjected to the highest load. Cu was found to cluster, and the number density of clusters increased with increasing load. In the material subjected to the highest load, Cu was enriched in regions that were neither Fe-rich nor Cr-rich. These regions also had the highest number density of Cu clusters.  相似文献   
8.
The atomic structure of an asymmetrical near Σ = 27 {525} tilt grain boundary (GB) in copper is determined by coupling high-resolution transmission electron microscopy and molecular dynamics simulation. The average GB plane is parallel to {414} in crystal (1) and {343} in crystal (2). The detailed GB structure shows that it is composed of facets always parallel to {101} and {111} in crystals (1) and (2), respectively. The atomic structure of one facet is described using the structural units model. Each facet is displaced with respect to its neighbours by a pure step, giving rise to the asymmetry of the GB plane orientation. The energy of this asymmetrical GB is significantly lower than that of both the {525} symmetrical and the {11,1,11}/{111} asymmetrical Σ = 27 GBs. One GB region displays another atomic structure with a dislocation that accounts for the misfit between interatomic distances in the {414} and {343} GB planes.  相似文献   
9.
Mechanochemical synthesis is a promising method for studying the size-dependent melting of metals if the size of the resulting metallic nanoparticles can be tuned effectively. Here, with Cu as an example, we show that tuning of particle sizes can be accomplished by extending the milling time at a high milling speed and following annealing of the milled samples. With the so prepared samples, the melting point depression of Cu nanoparticles and its size dependence are successfully investigated.  相似文献   
10.
The present work explores the possibilities of the application of Scheil–Gulliver equation in modelling the solidification of a real alloy. For this study, Cu-9 wt%Ni-6 wt%Sn alloy was chosen which exhibits profuse micro-segregation during solidification, and hence easy to quantify experimentally. Also, this alloy is spinodally strengthened high strength copper alloy and has industrial importance. In this study, thermodynamic assessment using Scheil–Gulliver solidification model was carried out. Subsequently, the assessed result was compared with the experimentally obtained results from energy-dispersive X-ray spectroscopy analysis, and a good agreement was observed between these results. Therefore, it could be concluded that the solidification of this particular alloy system can be modelled using Scheil–Gulliver equation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号