首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2019年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Cast Co–5.6 wt% Cu and Co–13.6 wt% Cu alloys were subjected to severe plastic deformation (SPD) by high-pressure torsion (HPT). The HPT treatment drastically decreases the size of the Co grains (from 20 µm to 100 nm) and the Cu precipitates (from 2 µm to 10 nm). As a result, the coercivity H c of both the alloys radically increases. The saturation magnetization, M s, remains almost unchanged. Thus, SPD of the bulk samples opens the way for drastic increase in the coercivity for the Co-based alloys.  相似文献   
2.
Ferrite nanoparticles are interesting materials owing to their unique physical and chemical properties. The metal-doped ferrites have well-defined structures and magnetic response, such as high permeability for a specific frequency range. In this study, copper-substituted nickel ferrite (Ni1?xCuxFe2O4) nanoparticles with a compositional range of 0?≤?x?≤?0.3 were synthesised through a co-precipitation technique. Metal chlorides were used as precursors and NaOH as a precipitating agent for the growth of ferrite nanoparticles. To minimise the internal stresses and maximise the magnetic response, ferrite nanoparticles were annealed in a furnace at 700°C for 6 h. The structural and magnetic response of Ni1?xCuxFe2O4 ferrite with different values of x were investigated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM) and X-ray Diffraction (XRD) techniques. XRD analysis confirmed the formation of cubic spinel structure of single phase for all the compositions. The lattice constant decreased with increase in the value of x. FT-IR study showed two main metal oxygen bonds in the range 500–700 cm?1 confirming the formation of a single-phase cubic inverse structure of Cu-substituted Ni ferrite. VSM results revealed the formation of ferrimagnetic nanoparticles. The optical and magnetic response of the ferrite nanoparticles changed with Cu content.  相似文献   
3.

Defect formation in Nd2Fe14B grains, caused by a low-pressure-pack-sublimation Zn coating process, has been investigated. The results indicate that, in the Zn-affected region, low-angle boundaries decorated with precipitates form within the Nd2Fe14B grains. Zn, which is almost insoluble in Nd2Fe14  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号