首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   2篇
  2019年   1篇
  2018年   2篇
  2014年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Clock Drawing Test (CDT) is a widely used instrument in the neuropsychological assessment of Alzheimer's disease (AD). As CDT performance necessitates several cognitive functions (e.g., visuospatial and constructional abilities, executive functioning), an interaction of multiple brain regions is likely. Fifty-one subjects with mild cognitive impairment, 23 with AD and 15 healthy controls underwent high-resolution magnetic resonance imaging. Optimized voxel-based morphometry (VBM) was performed to investigate the putative association between CDT performance and gray matter (GM) density throughout the entire brain. In the first step of analysis (p<.001, uncorrected), VBM revealed a reduced GM density in numerous cortical (temporal lobe, frontal lobe, parietal lobe, cerebellum) and subcortical (thalamus, basal ganglia) brain regions to be associated with poorer CDT performance. When corrected for multiple comparisons (p<.01), the associations remained significant predominantly in the left temporal and--less pronounced--the right temporal lobe. VBM demonstrated CDT performance to depend on the integrity of widely distributed cortical and subcortical areas in both brain hemispheres with accentuation in the left-sided temporal lobe region.  相似文献   
2.
Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process.  相似文献   
3.
付梅  汪强 《心理科学进展》2014,22(4):659-667
目前神经经济学的首要目标是探讨人们经济决策背后的认知机制和神经基础。随着脑成像技术的发展, 人们对于脑结构和功能的认识也越来越深入。跨期决策作为经济决策领域的一个重要分支, 对其理解可以丰富决策的理论内容。首先, 梳理了关于跨期决策神经机制研究, 阐述了跨期决策的四种理论, 分别为单一评价理论(single-valuation theory)、双评价理论(dual-valuation theory)、自我控制理论(self-control theory)和自我参照加工理论(self-referential processing theory), 以及脑损伤研究证据。其次, 分别整理了基于体素形态学和弥散张量成像技术在跨期决策领域中的应用, 并揭示前额叶灰质和白质体积以及背外侧前额叶-纹状体神经纤维连接对于决策冲动性的影响。最后, 未来研究需要注意其在研究方法、认知过程、决策冲动性评估模型上的创新与突破。  相似文献   
4.
The neural basis of developmental changes in transitive reasoning in parietal regions was examined, using voxel-based morphometry. Young adolescents and adults performed a transitive reasoning task, subsequent to undergoing anatomical magnetic resonance imaging (MRI) brain scans. Behaviorally, adults reasoned more accurately than did the young adolescents. Neural results showed (i) less grey matter density in superior parietal cortex in the adults than in the young adolescents, possibly due to a developmental period of synaptic pruning; (ii) improved performance in the reasoning task was negatively correlated with grey matter density in superior parietal cortex in the adolescents, but not in the adult group; and (iii) the latter results were driven by the more difficult trials, requiring greater spatial manipulation. Taken together, the results support the idea that during development, regions in superior parietal cortex are fine-tuned, to support more robust spatial manipulation, resulting in greater accuracy and efficiency in transitive reasoning.  相似文献   
5.
Amnestic mild cognitive impairment (aMCI) is a clinical condition characterized by memory impairment in the absence of any other cognitive impairment and is commonly associated with high conversion to Alzheimer's disease. Recent evidence shows that executive functions and selective attention mechanisms could also be impaired in aMCI. In this study, we investigated performance differences (i.e., reaction times [RTs] and accuracy) between a group of aMCI participants and a group of age‐matched healthy individuals on the attentional network task (ANT) focusing on situations with increased interference. In particular, we assessed the relationship between interference and conflict effects and grey matter volumes (GMVs) of the anterior cingulate cortex (ACC)/pre‐supplementary motor area in the entire sample because of its crucial role in conflict monitoring. When compared with controls, aMCI participants were less accurate on the ANT, showing increased interference and conflict effects, but no differences in RTs. In addition, aMCI participants exhibited lower GMV in the ACC than controls. While better accuracy for interference and conflict effects was associated with an increase of GMV in the ACC for both groups, RTs from the interference effect were negatively correlated with GMV of the ACC only in aMCI participants. In other words, lower GMV values of the ACC were paralleled with significantly impaired performance in terms of interference resolution. In conclusion, our study suggests the presence of a selective impairment in interference and conflict monitoring in aMCI, which in turn is associated with decreased GMVs in the ACC.  相似文献   
6.
目前舞蹈与音乐两种训练对脑灰质结构影响的差异尚不明确。本研究利用基于体素的形态学分析方法(voxel-based morphometry, VBM), 比较现代舞训练被试、弦乐训练被试与对照组被试的脑结构磁共振数据。结果表明现代舞训练组在涉及感觉运动控制的皮层、皮层下结构及小脑多个区域出现灰质体积的显著增加与减少; 弦乐训练组则在与音乐训练直接相关的听-动-读皮层出现灰质体积的显著增加。这一发现提示现代舞训练可能系统性地影响广泛脑区的灰质结构, 弦乐训练可能局部地改变了具体功能脑区的灰质结构, 两种训练对脑灰质结构的影响模式存在差异。  相似文献   
7.
Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based morphometry in 30 lifetime heroin-dependent individuals who had abstained from drug use for 5 months, and 34 healthy participants. The DGM of the prefrontal, temporal and cingulate cortices significantly decreased in heroin addicts relative to the healthy group. Critically, partial correlation analysis, which controlled for age, education and gender factors as well as nicotine use and heroin abstinence duration, showed that the duration of heroin use negatively correlated with the DGM in heroin-dependent individuals. These results provide compelling evidence for structural abnormality in heroin-dependent individuals and further suggest that duration of heroin use is a critical factor leading to brain damage.  相似文献   
8.
Intensive training and the acquisition of expertise are known to bring about structural changes in the brain. Musical training is a particularly interesting model. Previous studies have reported structural brain modifications in the auditory, motor and visuospatial areas of musicians compared with nonmusicians. The main goal of the present study was to go one step further, by exploring the dynamic of those structural brain changes related to musical experience. To this end, we conducted a regression study on 44 nonmusicians and amateur musicians with 0–26 years of musical practice of a variety instruments. We sought first to highlight brain areas that increased with the duration of practice and secondly distinguish (thanks to an ANOVA analysis) brain areas that undergo grey matter changes after only limited years of musical practice from those that require longer practice before they exhibit changes. Results revealed that musical training results a greater grey matter volumes in different brain areas for musicians. Changes appear gradually in the left hippocampus and right middle and superior frontal regions, but later also include the right insula and supplementary motor area and left superior temporal, and posterior cingulate areas. Given that all participants had the same age and that we controlled for age and education level, these results cannot be ascribed to normal brain maturation. Instead, they support the notion that musical training could induce dynamic structural changes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号