首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   3篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Raman spectra and electronic spin resonance (ESR) parameters (spin-Hamiltonian parameter g factors, zero-field splitting parameter D, and hyperfine structure constant A) for the trigonal V3+ centers in salt guanidinium vanadium sulfate hexahydrate (GVSH) are calculated from the complete diagonalization (of energy matrix) method. The theoretical results are in agreement with the experimental findings and the trigonal crystal-field parameters are determined. The difficulty in explaining ESR parameters of V3+ in GVSH is removed.  相似文献   
2.
Did you visit the Neuronus conferences in the years 2012 and 2013 in Kraków? If not, then you certainly should have a close examination of this special issue including this introduction to at least have a glimpse of an idea of the highly interesting topics in the field of cognitive neuroscience that were presented at these conferences. If you were there, it is for sure a good choice to focus on this special issue as well, first to refresh your minds (we know our memories are far from perfect), but especially to see what happened with research of the presenters at these conferences.  相似文献   
3.
Room-temperature time-differential perturbed-angular-correlation (TDPAC) spectra of 140Ce arising through 140Ba-140La from 140Cs in He-doped Fe, unannealed and annealed in vacuum at various temperatures, were obtained in order to examine whether Ce (or rather, La and Ba) and He form complexes having a definite geometrical structure in Fe, as suggested by first-principles density-functional theory calculations. No clear signal of such complexes was observed in the TDPAC spectra. However, the TDPAC spectra indicate that Ce and He form complexes having a variety of geometrical structures. Comparison with reported TDPAC results on 111Cd arising from 111In in He-doped stainless steel shows that the parent atoms (La and Ba) of 140Ce trap He atoms more efficiently than In atoms do, indicating stronger bonding of He to the former atoms, while different from the present case, 111Cd (In)–He complexes form a unique geometrical structure.  相似文献   
4.
Respiration influences heart rate variability, leading to the suggestion that respiration should be controlled to assess autonomic function by using heart rate variability. Clearly, control of respiration is advantageous or even essential in several experimental circumstances. However, control of respiration, by itself, produces a small, but significant, increase in mean heart rate and a decrease in respiratory synchronous variation in heart rate. We tested whether, in some experimental situations, it may be possible to arrive at similar interpretation about autonomic function with and without using control of respiratory rate. heart rate spectral powers from nine subjects were compared between spontaneous and metronomic breathing during two sympatho-excitatory stresses, lower body negative pressure (LBNP) and head up tilt (HUT). The normalized spectral powers in supine and HUT during spontaneous breathing were: 0.43 and 0.75 in very low (VLF) and 0.28 and 0.09 in high frequency (HF) regions. The powers during metronomic breathing were: 0.36 and 0.82 (VLF) and 0.36 and 0.09 (HF). The powers in supine and LBNP during spontaneous breathing were: 0.43 and 0.81 (VLF) and 0.28 and 0.06 (HF). The powers during metronomic breathing were: 0.36 and 0.80 (VLF) and 0.36 and 0.07 (HF). All p values were <0.05. Therefore, changes in heart rate spectral powers during HUT and LBNP were similar during metronomic breathing and spontaneous breathing. These results suggest that in experimental designs such as in our study, using metronomic breathing may not provide any additional insight into autonomic function than that can be obtained during spontaneous breathing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号