首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
  国内免费   5篇
  2020年   10篇
  2019年   12篇
  2018年   5篇
  2017年   11篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   50篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
We propose a method for detecting influential observations in iterative principal factor analysis. For this purpose we derive the influence functionsI(x; LL T ) andI(x; ) for the common variance matrixT =LL T and the unique variance matrix , respectively, in the common factor decomposition =LL T + . A numerical example is given for illustration.The authors are grateful to Tomoyuki Tarumi and Atsuhiro Hayashi for their kind permission to use their software Seto/B for drawing Figures 1 and 2 and to anonymous reviewers for comments on the paper.  相似文献   
2.
Abstract

Optic flow (OF) has been utilized to investigate the sensory integration of visual stimuli during postural control. It is little known how the OF speed affects the aging brain during the sensory integration process of postural control. This study was to examine the effect of OF speeds on the brain activation using functional near-infrared spectroscopy (fNIRS) and postural sway between younger and older adults. Eleven healthy younger adults (5M/6F, age 22?±?1-year-old) and ten healthy older adults (4M/6F, age 71?±?5-year-old) participated in this study. A virtual reality headset was used to provide the OF stimulus at different speeds. A forceplate was used to record the center-of-pressure to compute the amplitude of postural sway (peak-to-peak). Compared with younger adults, older adults showed significantly increased activation in the OF speed of 10?m/s and decreased activation in the OF speed of 20?m/s in the left dorsolateral prefrontal cortex. Older adults also showed decreased activation in the left temporoparietal region (VEST) in the OF speed of 20?m/s. A significant difference in peak-to-peak was found between groups. Our results indicated that age might be associated with the ability to process fast OF stimulation.  相似文献   
3.
The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention.Twenty-eight children with BP and 20 TD-children participated in the study. Motor performance was assessed with the Movement Assessment Battery for Children (MABC2), three subtests of the Bruininks Oseretsky Test (BOT2): Bilateral Coordination, Balance and Running Speed & Agility, and a Wii Fit ski slalom test. The TD children and half of the children in the BP group were tested before and after a 6 weeks non-intervention period. All children with BP received 6 weeks of Wii Fit intervention (with games other than the ski game) and were tested before and afterwards.Children with BP were less proficient than TD children in playing the Wii Fit ski slalom game. Training with the Wii Fit improved their motor performance. The improvement was significantly larger after intervention than after a period of non-intervention. Therefore the change cannot solely be attributed to spontaneous development or test–retest effect. Nearly all children enjoyed participation during the 6 weeks of intervention. Our study shows that Wii Fit intervention is effective and is potentially a method to support treatment of (dynamic) balance control problems in children.  相似文献   
4.
The authors sought to investigate if short-term gaze stability exercises have an effect on postural stability of dynamic standing during neck movement in patients with posterior circulation stroke (PCS). Patients in both PCS and non-PCS groups were assigned to either an intervention or control group. The intervention group performed the gaze stability exercises for 10 min while the control group was merely resting. The center of pressure velocity was calculated to evaluate the postural stability. After intervention, PCS and non-PCS showed a significant reduction in center of pressure velocity during dynamic standing with eyes closed condition, and the PCS group showed a significant improvement in eye-opened condition. This study indicated that gaze stability exercises improve PCS patients' postural control, especially during dynamic standing.  相似文献   
5.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi—BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   
6.
Estimation of whether an object is reachable from a specific body position constitutes an important aspect in effective motor planning. Researchers who estimate reachability by way of motor imagery with adults consistently report the tendency to overestimate, with some evidence of a postural effect (postural stability hypothesis). This idea suggests that perceived reaching limits depend on an individual's perceived postural constraints. Based on previous work with adults, the authors expected a significant postural effect with the Reach 2 condition, as evidenced by reduced overestimation. Furthermore, the authors hypothesized that the postural effect would be greater in younger children. They then tested these propositions among children aged 7, 9, and 11 years by asking them to estimate reach while seated (Reach 1) and in the more demanding posture of standing on 1 foot and leaning forward (Reach 2). Results indicated no age or condition difference, therefore providing no support for a postural effect. When the authors compared these data to a published report of adults, a developmental difference emerged. That is, adults recognize the perceived postural constraint of the standing position resulting in under- rather than overestimation, as displayed in the seated condition. Although preliminary, these observations suggest that estimates of reach (action planning) continue to be refined between late childhood and young adulthood.  相似文献   
7.
Previous work suggests that there may be fundamental differences between compensatory stepping responses evoked by postural perturbation and visually cued “volitional” stepping (e.g., gait initiation). In contrast to visual cueing, postural destabilization evokes an array of sensory inputs that are intrinsically linked to the mobilization of rapid compensatory responses. The hypothesis examined in this study was that this fundamental difference would lead to distinct changes in the temporal characteristics of the stepping response. Six healthy young adults were instructed to step quickly in response to either visual cueing or anterioposterior platform motion. Both forward and backward stepping responses were characterized, using measures of vertical ground reaction force. A stereotypical temporal patterning of the stepping response occurred in both stimulus conditions and both directions of stepping, and anticipatory postural adjustments were evident in all trials. However, postural destabilization led to a more rapid initiation and execution of the temporal pattern, in comparison with visually cued responses. The most pronounced effect was seen in the duration of the response, which was reduced by a factor of two, with approximately proportional foreshortening of both the preparatory and swing phases. The results suggest that sensory information conveying a state of instability has a distinct influence on the characteristics of a subsequent stepping reaction. The persistence of the anticipatory postural adjustments suggests that the failure to see this element of the response in previous studies may reflect fundamental differences between volitional and unplanned compensatory stepping.  相似文献   
8.
From among the diverse meanings of stability, the one the author adopts here is that the effects of a perturbation are opposed, and therefore small effects remain small. Except in linear systems, however, instability need not lead to unbounded motion and may actually be desirable when maneuverability is important. Moreover, properties of nerves, muscles, and tendons present serious challenges to stabilization. A review of observations from the motor control literature reveals that responses to perturbations in many common situations assist rather than resist the perturbation and are therefore presumably destabilizing. The observations encompass situations of position maintenance as well as impending or ongoing movement. The author proposes that the motor control system responds to a sudden perturbation by a pattern of muscle activity that mimics an accustomed voluntary movement, oblivious of stability considerations. What prevents runaway motion in the face of short-term instability appears to be voluntary intervention.  相似文献   
9.
The shifts in relative phase that are observed when rhythmically coordinated limbs are submitted to asymmetric mass perturbations have typically been attributed to the induced eigenfrequency difference ($DL$oM) between the limbs. Modeling the moving limbs as forced linear oscillators, however, reveals that asymmetric mass perturbations may induce a difference not only in eigenfrequency (i.e., $DL$oM $$ 0) but also in the covarying low-frequency control gains (i.e., $DLk $$ 0). Because the inverse of the lowfrequency control gain (k) reflects the level of muscular torque (input) required for a particular displacement from equilibrium (output), asymmetric mass perturbations may result in an imbalance in the muscular torques required for task performance (related to $DLk $$ 0). Thus, it is possible that the effects attributed to $DL$oM were in fact mediated by $DLk. In 2 experiments, the authors manipulated $DLk and $DL$oM separately by applying mass perturbations to the lower legs of 9 participants. The relative phasing between the legs was not affected by $DLk, but manipulation of $DL$oM (while $DLk remained approximately 0) induced systematic relative phase shifts that were more pronounced for antiphase than for in-phase coordination. That indication that the coordination dynamics is indeed influenced by an imbalance in eigenfrequency is discussed vis-à-vis the question of how such a merely peripheral property may affect the underlying coordination process.  相似文献   
10.
The authors examined and compared the effect of support-surface perturbations of various magnitudes on lower extremity kinetics of 7 children with cerebral palsy (CP) and 8 typically developing (TD) children. Results showed that the highest velocity tolerated without stepping was slower in children with CP than in either age-matched TD or younger TD children. Multimodal torque profiles were more frequent in children with CP than in TD controls. TD groups temporally and spatially organized torque activation, whereas children with CP activated all joints simultaneously and showed altered torque contribution patterns among joints. Those results suggest that impairments in reactive postural control in children with CP result not only from developmental delay but also from pathology. Evidence for pathology included increased numbers of torque bursts required to regain stability and less efficient temporal and spatial organization of torque activation patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号