首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Three emerging strands of evidence are helping to resolve the causes of the anterograde amnesia associated with damage to the diencephalon. First, new anatomical studies have refined our understanding of the links between diencephalic and temporal brain regions associated with amnesia. These studies direct attention to the limited numbers of routes linking the two regions. Second, neuropsychological studies of patients with colloid cysts confirm the importance of at least one of these routes, the fornix, for episodic memory. By combining these anatomical and neuropsychological data strong evidence emerges for the view that damage to hippocampal—mammillary body—anterior thalamic interactions is sufficient to induce amnesia. A third development is the possibility that the retrosplenial cortex provides an integrating link in this functional system. Furthermore, recent evidence indicates that the retrosplenial cortex may suffer “covert” pathology (i.e., it is functionally lesioned) following damage to the anterior thalamic nuclei or hippocampus. This shared indirect “lesion” effect on the retrosplenial cortex not only broadens our concept of the neural basis of amnesia but may also help to explain the many similarities between temporal lobe and diencephalic amnesia.  相似文献   
2.
It is well established that the dorsal hippocampal formation is crucial for spatial memory in rats. However, little is known about the distinct functions of the dorsal hippocampus and the dorsal subiculum. To examine the role of the dorsal hippocampus and the dorsal subiculum, Long-Evans rats with excitotoxic lesions (NMDA) of the dorsal hippocampus (DH), the dorsal subiculum (DS), or both (DHDS), and controls were trained on a nonmatching-to-place task. Then, to identify the strategy used by each group, they were tested on the same task in the dark with the T-maze being rotated between the sample and the test runs. In the light, rats with combined lesions were impaired. In the dark, groups DH, DS, and controls performed near chance level except in trials without rotation, suggesting the use of a sense of direction. The same rats were trained on a radial-arm maze task. In the light, where proximal visual cues were accessible, combined lesions affected performance whereas in the dark, it was impaired by all lesions. This experiment demonstrated that the dorsal subiculum and the dorsal hippocampus play a crucial role in processing idiothetic information and/or in maintenance of this information in memory.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号