首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The present study was conducted to examine the relationship between expertise in movement correction and rate of movement reprogramming within limited time periods, and to clarify the specific cognitive processes regarding superior reprogramming ability in experts. Event-related potentials (ERPs) were recorded in baseball experts (n=7) and novices (n=7) while they completed a predictive task. The task was to manually press a button to coincide with the arrival of a moving target. The target moved at a constant velocity, and its velocity was suddenly decreased in some trials. Under changed velocity conditions, the baseball experts showed significantly smaller timing errors and a higher rate of timing reprogramming than the novices. Moreover, ERPs in baseball experts revealed faster central negative deflection and augmented frontal positive deflection at 200ms (N200) and 300ms (Pd300) after target deceleration, respectively. Following this, peak latency of the next positive component in the central region (P300b) was delayed. The negative deflection at 200ms, augmented frontal positive deflection, and late positive deflection at 300ms have been interpreted as reflecting stimulus detection, motor inhibition, and stimulus-response translation processes. Taken together, these findings suggest that the experts have developed movement reprogramming to avoid anticipation cost, and this is characterized by quick detection of target velocity change, stronger inhibition of the planned, incorrect response, and update of the stimulus-response relationship in the changed environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号