首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Neurologically normal individuals exhibit strong leftward response biases during free-viewing perceptual judgments of brightness, quantity, and size. When participants view two mirror-reversed objects and they are forced to choose which object appears darker, more numerous, or larger, the stimulus with the relevant feature on the left side is chosen 60-75% of the time. This effect could be influenced by inaccurate judgments of the true centre-point of the objects being compared. In order to test this possibility, 10 participants completed three visual bisection tasks on stimuli known to elicit strong leftward response biases. Participants were monitored using a remote eye-tracking device and instructed to stare at the subjective midpoint of objects presented on a computer screen. Although it was predicted that bisection errors would deviate to the left of centre (as is the case in the line bisection literature), the opposite effect was found. Significant rightward bisection errors were evident on two of the three tasks, and the leftward biases seen during forced-choice tasks could be the result of misjudgments to the right of centre on these same tasks.  相似文献   
2.
When neurologically normal individuals bisect a horizontal line as accurately as possible, they reliably show a slight leftward error. This leftward inaccuracy is called pseudoneglect because errors made by neurologically normal individuals are directionally opposite to those made by persons with visuospatial neglect (Jewell & McCourt, 2000). In the current study, normal right-handed observers bisected horizontal lines that were altered to bias line length judgments either toward the right or the left side of the line. Non-target dots were placed on or near the line stimuli using principles derived from a theory of visual illusions of length called centroid extraction (Morgan, Hole, & Glennerster, 1990). This theory argues that the position of a visual target is calculated as the mean position of all stimuli in close proximity to the target stimulus. We predicted that perceptual alterations that shifted the direction of centroid extraction would also shift the direction of line bisection errors. Our findings confirmed this prediction and support the idea that both perceptual and attentional factors contribute to the pseudoneglect effect.  相似文献   
3.
The mechanisms underlying the right hemisphere's dominance for spatial and attentional functions lacks a comprehensively explanation. For example, perceptual biases, as observed in line bisection and related tasks, might be caused by an attentional asymmetry or by perceptual processes such as a specialization of the left and right hemisphere for high and low spatial frequencies (SFs), respectively. Here we used the gratingscales task to measure perceptual bias in SF judgements, and we cued participants' attention either to high or low SFs. Participants showed a leftward bias when comparing the high SF components of the stimulus, and a rightward bias when comparing the low SF components-opposite to what would be expected from a hemispheric lateralization for SFs. Two control experiments used different strategies to manipulate the width of the attentional window. However, we observed no influence on perceptual bias, thus ruling out the possibility that the results in Experiment 1 were due to differences in attentional window size. These data support the idea of an attentional asymmetry underlying perceptual bias. Our results provide novel support for the role of attentional asymmetry in perceptual biases.  相似文献   
4.
Spatial bias demonstrated in tasks such as line-bisection may stem from perceptual-attentional (PA) "where" and motor-intentional (MI) "aiming" influences. We tested normal participants' line bisection performance in the presence of an asymmetric visual distracter with a video apparatus designed to dissociate PA from MI bias. An experimenter stood as a distractor to the left or right of a video monitor positioned in either near or far space, where participants viewed lines and a laser point they directed under (1) natural and (2) mirror-reversed conditions. Each trial started with the pointer positioned at either the top left or top right corner of the screen, and alternated thereafter. Data analysis indicated that participants made primarily PA leftward errors in near space, but not in far space. Furthermore, PA, but not MI, bias increased bilaterally in the direction of distraction. In contrast, MI, but not PA, bias was shifted bilaterally in the direction of startside. Results support the conclusion that a primarily PA left sided bias in near space is consistent with right hemisphere spatial attentional dominance. A bottom-up visual distractor specifically affected PA "where" spatial bias while top-down motor cuing influenced MI "aiming" bias.  相似文献   
5.
6.
The original aim was to examine the effect of perceived distance, induced by the Ponzo illusion, on left/right asymmetries for line bisection. In Experiment 1, university students (n?=?29) made left/right bisection judgements for lines presented in the lower or upper half of the screen against backgrounds of the Ponzo stimuli, or a baseline. While the Ponzo illusion had relatively little effect on line bisection, elevation in the baseline condition had a strong effect, whereby the leftward bias was increased for upper lines. Experiment 2 (n?=?17) eliminated the effect of elevation by presenting the line in the middle and moving the Ponzo stimuli relative to the line. Despite this change, the leftward bias was still stronger in the upper condition in the baseline condition. The final experiment (n?=?17) investigated whether upper/lower visual stimulation, which was irrelevant to the task, affected asymmetries for line bisection. The results revealed that a rectangle presented in the upper half of the screen increased the leftward line bisection bias relative to a baseline and lower stimulation condition. These results corroborate neuroimaging research, showing increased right parietal activation associated with shifts of attention into the upper hemispace. This increased right parietal activation may increase the leftward attentional bias—resulting in a stronger leftward bias for line bisection.  相似文献   
7.
Pseudoneglect is a slight but consistent leftward attentional bias commonly observed in healthy young populations, purportedly explained by right hemispheric dominance. It has been suggested that normal aging might be associated with a decline of the right hemisphere. According to this hypothesis, a few studies have shown that elderly tend to exhibit a rightward attentional bias in line bisection. In the present study, we tested this hypothesis in young and older participants using a perceptual landmark task. Results yield evidence for an age-related shift, from a strong attentional leftward bias in young adults toward a suppressed or even a reversed bias in the elderly. Right hemisphere impairment coupled to a left hemispheric compensation might explain the perceptual shift observed in older adults. However, a decline in corpus callosum function cannot be excluded. Alternatively, these results may be in agreement with the hypothesis of an age-related specific inhibition of return dysfunction, an overt attentional orienting mechanism, and/or a decrease of dopamine.  相似文献   
8.
The background page on which a stimulus is presented can influence the allocation of attention to that stimulus. The purpose of this study was to learn if there are hemispheric asymmetries in how background distraction affects attentional processing. Asymmetries were investigated by having right eye dominant subjects perform line bisections and manipulating the side of background distraction (right versus left), the eye of regard (right versus left), and the type of attention allocated (focal versus global). Overall subjects bisected lines to the left of center (pseudoneglect) and when viewing with the right eye (versus left) deviated more to the left. Subjects had more background distraction when viewing symbol than solid lines. Although overall, bias did not differ with the side of background distraction or the line being on one side or the other, when subjects viewed symbol, but not solid lines, this leftward bias was increased when the line was displaced to the right, thereby increasing the size of the left sided background. These findings suggest that when engaging the left hemisphere by using focused attention and placing the line on the right side, there is more distraction than when the right hemisphere is engaged.  相似文献   
9.
Background objectives: Studies suggest that the right hemisphere is dominant for emotional facial recognition. In addition, whereas some studies suggest the right hemisphere mediates the processing of all emotions (dominance hypothesis), other studies suggest that the left hemisphere mediates positive emotions the right mediates negative emotions (valence hypothesis). Since each hemisphere primarily attends to contralateral space, the goals of this study was to learn if emotional faces would induce a leftward deviation of attention and if the valence of facial emotional stimuli can influence the normal viewer’s spatial direction of attention. Methods: Seventeen normal right handed participants were asked to bisect horizontal lines that had all combinations of sad, happy or neutral faces at ends of these lines. During this task the subjects were never requested to look at these faces and there were no task demands that depended on viewing these faces. Results: Presentation of emotional faces induced a greater leftward deviation compared to neutral faces, independent of where (spatial position) these faces were presented. However, faces portraying negative emotions tended to induce a greater leftward bias than positive emotions. Conclusions: Independent of location, the presence of emotional faces influenced the spatial allocation of attention, such that normal subjects shift the direction of their attention toward left hemispace and this attentional shift appears to be greater for negative (sad) than positive faces (happy).  相似文献   
10.
Patients with unilateral neglect of the left side bisect physical lines to the right whereas individuals with an intact brain bisect lines slightly to the left (pseudoneglect). Similarly, for mental number lines, which are arranged in a left-to-right ascending sequence, neglect patients bisect to the right. This study determined whether individuals with an intact brain show pseudoneglect for mental number lines. In Experiment 1, participants were presented with visual number triplets (e.g., 16, 36, 55) and determined whether the numerical distance was greater on the left or right side of the inner number. Despite changing the spatial configuration of the stimuli, or their temporal order, the numerical length on the left was consistently overestimated. The fact that the bias was unaffected by physical stimulus changes demonstrates that the bias is based on a mental representation. The leftward bias was also observed for sets of negative numbers (Experiment 2)—demonstrating not only that the number line extends into negative space but also that the bias is not the result of an arithmetic distortion caused by logarithmic scaling. The leftward bias could be caused by a rounding-down effect. Using numbers that were prone to large or small rounding-down errors, Experiment 3 showed no effect of rounding down. The task demands were changed in Experiment 4 so that participants determined whether the inner number was the true arithmetic centre or not. Participants mistook inner numbers shifted to the left to be the true numerical centre—reflecting leftward overestimation. The task was applied to 3 patients with right parietal damage with severe, moderate, or no spatial neglect (Experiment 5). A rightward bias was observed, which depended on the severity of neglect symptoms. Together, the data demonstrate a reliable and robust leftward bias for mental number line bisection, which reverses in clinical neglect. The bias mirrors pseudoneglect for physical lines and most likely reflects an expansion of the space occupied by lower numbers on the left side of the line and a contraction of space for higher numbers located on the right.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号