首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Anterior pelvic tilt has been proposed to predispose the hamstring in soccer players to injury at the late swing phase during a sprint, however the mechanism on how the changes in the alignment would affect the kinematics are still unclear. Thirty-four male amateur soccer players were recruited for this study. Pelvic tilt was measured using the DIERS Formetric 4D. Lower extremity angles were recorded using an 8-camera Vicon motion capture system at 200 Hz while the athlete performed a high speed run on a motorised treadmill. Late swing phase was extracted from 5 running cycle which were later analysed using statistical parametric mapping (SPM). The results show that the increase of anterior pelvic tilt angle was significantly correlated with hip (r = −0.421 to −0.462, p = 0.015) and knee flexion (r = −0.424 to −0.472, p = 0.026) values. No other correlation was found between the anterior pelvic tilt and the angles at the coronal plane. By using time series analysis it was shown that the anterior pelvic tilt measured in a standing position would affect the adjacent segments’ kinematics while running as suggested in the kinetic chain theory; which would potentially predispose the soccer athletes to hamstring injury by maintaining knee extension.  相似文献   
3.
家庭寄养和孤残儿童的社会适应能力发展   总被引:3,自引:0,他引:3  
曾凡林  昝飞 《心理科学》2001,24(5):580-582
本研究运用儿童适应行为评定量表.对上海市的70名家庭寄养及31名在院的孤残儿童进行了测量。结果表明;家庭寄养有助于孤残儿童的适应能力的发展,而且传统的隔离式孤残儿童养育方式向融合式转变是成功的;孤残儿盘的寄养年龄越小.其适应能力越好,也越有利于安置的成功。  相似文献   
4.
Abnormal muscle activation patterns during gait following knee injury that persist past the acute injury and rehabilitation phase (>three years) are not well characterized but may be related to post-traumatic knee osteoarthritis. The aim was to characterize the abnormal muscle activity from electromyograms of five leg muscles that were recorded during treadmill walking for young adults with and without a previous knee injury 3–12 years prior. The wavelet transformed and amplitude normalized electromyograms yielded intensity patterns that reflect the muscle activity of these muscles resolved in time and frequency. Patterns belonging to the affected or unaffected leg in previously injured participants and patterns belonging to a previously injured vs. uninjured participant were grouped and then classified using a principal component analysis followed by a support vector machine. A leave-one-out cross-validation was used to test the model significance and generalization. The results showed that trained classifiers could successfully recognize whether muscle activation patterns belonged to the affected or unaffected leg of previously injured individuals. Classification rates of 83% were obtained for all subjects, 100% for females only, indicating sex-specific knee injury effects. In contrast, it was not possible to discriminate between patterns belonging to the previously injured legs or dominant legs of control subjects. For females, the injured leg showed a stronger muscle activity for hamstring muscles and a lower activity for the vastus lateralis. In conclusion, systematic knee injury effects on the neuromuscular control of the knee during gait were present 3–12 years later.  相似文献   
5.
IntroductionReduced neural drive is mainly thought to explain the bilateral deficit phenomenon, i.e. the difference in maximal isometric voluntary contraction (MVC) between unilateral and bilateral contractions. The aim of the present study was to further document if bilateral knee extension is associated with changes in voluntary activation level assessed by both peripheral nerve electrical stimulation and transcranial magnetic stimulation.MethodsFourteen subjects performed unilateral and bilateral knee extensions with both superimposed femoral electrical nerve stimulation and transcranial magnetic stimulation in order to assess voluntary activation (VAFNES) and cortical voluntary activation (VATMS), respectively.ResultsThere was no difference in MVC force of the tested leg when involved in unilateral and bilateral knee extensions (p = 0.87). However, a significantly reduced VAFNES (−2.1 ± 2.4%; p = 0.01) and VATMS (−1.6 ± 2.7%; p = 0.04) have been evidenced during bilateral knee extension.DiscussionIt is hypothesized that counterbalances could have masked the decrease of voluntary activation during bilateral contraction.  相似文献   
6.
Patellofemoral pain (PFP) is common among runners and those recovering from anterior cruciate ligament reconstruction. Training programs designed to prevent or treat injuries often include balance training, although balance interventions have been reported to coincide with more knee injuries. Knowledge of the effect of balance exercises on knee mechanics may be useful when designing training programs. High knee abduction moment has been implicated in the development of PFP, and imbalance between vastus lateralis (VL) and vastus medialis oblique (VMO) may contribute to patellofemoral stress. The purpose was to quantify knee abduction moment and vasti muscle activity during balance exercises. Muscle activity of VMO and VL, three-dimensional lower-extremity kinematics, and ground reaction forces of healthy recreational athletes (12M, 13F) were recorded during five exercises. Peak knee abduction moment, ratio of VMO:VL activity, and delay in onset of VMO relative to VL were quantified for each exercise. The influence of sex and exercise on each variable was determined using a mixed-model ANOVA. All analyses indicated a significant main effect of exercise, p < 0.05. Follow-up comparisons showed low peak knee abduction moment and high VMO:VL ratio for the task with anterior-posterior motion. Delay of VMO relative to VL was similar among balance board tasks.  相似文献   
7.
PurposeThe current study purpose was to investigate the effects of contralateral pelvic drop gait on the magnitude of the knee adduction moment (KAM) within asymptomatic individuals.Methods15 participants walked on a dual belt instrumented treadmill while segment motions and ground reaction forces were recorded. Participants completed typical gait trials and pelvic drop gait trials. The net external KAM was calculated using inverse dynamics. Peak and impulse were identified. Frontal plane hip abduction/adduction and pelvic drop were determined. Correlations and paired t-tests were used for statistical hypothesis testing (alpha = 0.05).ResultsPeak hip adduction angle reached 4° (±6°) during pelvic drop trials compared to 0° (±6°) in the typical gait trials (p < 0.05) equating to 4° of pelvic drop. KAM impulse was higher in the pelvic drop trial (0.16 Nm s/kg ± 0.04) compared to the typical gait trial (0.13 Nm s/kg ± 0.05) (p < 0.001). Peak KAM was higher in the pelvic drop trial (0.55 Nm/kg ± 0.15) compared to the typical gait trial (0.40 Nm/kg ± 0.109) (p < 0.001). Correlations between change in KAM and change in hip adduction moment and pelvic drop were r > 0.80 (p < 0.001).ConclusionPelvic drop gait increased KAM peak and impulse. Results have implications for understanding relationships between frontal plane hip movement and the knee adduction moment during gait.  相似文献   
8.
The aim of this study was to investigate the relationships between technique characteristics and knee abduction moments during 90° cuts. A cross sectional design involving 26 elite and sub-elite female soccer players (mean ± SD; age: 21 ± 3.2 years, height: 1.68 ± 0.07 m, and mass: 59.1 ± 6.8 kg) was used to explore relationships between pre-determined technical factors on knee abduction moments during cutting. Three dimensional motion analyses of 90° cuts on the right leg were performed using ‘Qualisys Pro Reflex’ infrared cameras (240 Hz). Ground reaction forces were collected from two AMTI force platforms (1200 Hz) embedded into the running track to examine 2nd last and last footfalls. Pearson’s correlation coefficients, co-efficients of determination and hierarchical multiple regression were used to explore relationships between a range of technique parameters and peak knee abduction moments. Significance was set at p < .05. Hierarchical multiple regression revealed that initial knee abduction angle, lateral leg plant distance and initial lateral trunk lean could explain 67% (62% adjusted) of the variation in peak knee abduction moments (F(1,22) = 8.869, p = .007). These findings reveal potential modifiable technical factors to lower peak knee abduction moments during cutting.  相似文献   
9.
The mechanisms for proprioceptive changes associated with knee osteoarthritis (OA) remain elusive. Observations of proprioceptive changes in both affected knees and other joints imply more generalized mechanisms for proprioceptive impairment. However, evidence for a generalized effect remains controversial. This study examined whether joint repositioning proprioceptive deficits are localized to the diseased joint (knee) or generalized across other joints (elbow and ankle) in people with knee OA. Thirty individuals with right knee OA (17 female, 66 ± 7 [mean ± SD] years) of moderate/severe radiographic disease severity and 30 healthy asymptomatic controls of comparable age (17 female, 65 ± 8 years) performed active joint repositioning tests of the knee, ankle and elbow in randomised order in supine. Participants with knee OA had a larger relative error for joint repositioning of the knee than the controls (OA: 2.7 ± 2.1°, control: 1.6 ± 1.7°, p = .03). Relative error did not differ between groups for the ankle (OA: 2.2 ± 2.5°, control: 1.9 ± 1.3°, p = .50) or elbow (OA: 2.5 ± 3.3°, control: 2.9 ± 2.8°, p = .58). These results are consistent with a mechanism for proprioceptive change that is localized to the knee joint. This could be mediated by problems with mechanoreceptors, processing/relay of somatosensory input to higher centers, or joint-specific interference with cognitive processes by pain.  相似文献   
10.
High- (HA) and low-arched athletes (LA) experience distinct injury patterns. These injuries are the result of the interaction of structure and biomechanics. A suggested mechanism of patellofemoral pain pertains to frontal plane knee moments which may be exaggerated in LA athletes. We hypothesize that LA athletes will exhibit greater peak knee abduction moments than high-arched athletes.MethodsTwenty healthy female recreational athletes (10 HA and 10 LA) performed five over-ground barefoot walking and five barefoot running trials at a self-selected velocity while three-dimensional kinematics and ground reaction forces were recorded. Peak knee abduction moments and time-to-peak knee abduction moments were calculated using Visual 3D.ResultsHigh-arched athletes had smaller peak knee abduction moments compared to low-arched athletes during walking (KAM1: p = 0.019; KAM2: p = 0.015) and running (p = 0.010). No differences were observed in time-to-peak knee abduction moment during walking (KAM1: p = 0.360; KAM2: p = 0.085) or running (p = 0.359).ConclusionsThese findings demonstrate that foot type is associated with altered frontal plane knee kinetics which may contribute to patellofemoral pain. Future research should address the efficacy of clinical interventions including orthotics and rehabilitation programs in these athletes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号