首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  国内免费   4篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
When teaching infants new actions, parents tend to modify their movements. Infants prefer these infant-directed actions (IDAs) over adult-directed actions and learn well from them. Yet, it remains unclear how parents’ action modulations capture infants’ attention. Typically, making movements larger than usual is thought to draw attention. Recent findings, however, suggest that parents might exploit movement variability to highlight actions. We hypothesized that variability in movement amplitude rather than higher amplitude is capturing infants’ attention during IDAs. Using EEG, we measured 15-month-olds’ brain activity while they were observing action demonstrations with normal, high, or variable amplitude movements. Infants’ theta power (4–5 Hz) in fronto-central channels was compared between conditions. Frontal theta was significantly higher, indicating stronger attentional engagement, in the variable compared to the other conditions. Computational modelling showed that infants’ frontal theta power was predicted best by how surprising each movement was. Thus, surprise induced by variability in movements rather than large movements alone engages infants’ attention during IDAs. Infants with higher theta power for variable movements were more likely to perform actions successfully and to explore objects novel in the context of the given goal. This highlights the brain mechanisms by which IDAs enhance infants’ attention, learning, and exploration.  相似文献   
2.
3.
4.
ObjectivesThe present study aimed to investigate the difference in fundamental cognitive processing and neural oscillations between badminton players and sedentary controls.DesignA cross-sectional design was adopted to address this issue.MethodsWe compared time-frequency electroencephalographic (EEG) activity from collegiate female badminton players (n = 12, aged 20.58 ± 2.75 years) and age-and gender-matched sedentary non-athletic controls (n = 13, aged 19.08 ± 2.10 years) when they performed a task that involves visuo-spatial attention and working memory.ResultsWe observed that players responded faster than controls on the task without suffering any increase in error responses. Correspondingly, the players, relative to controls, exhibited higher task-related modulations in beta power in the attention condition as well as in theta and beta power in the working memory condition. Notably, the behavior-EEG correlations revealed that better attention performance is associated with lower beta power, while greater working memory is related to higher theta power.ConclusionsOur results shed light on the mechanisms of athletic superiority in fundamental cognitive functioning: the higher theta synchronization points to a greater engagement of attention, whereas the higher beta desynchronization supports the contribution of processing speed (or motor-related processing) to better performance in athletes. This study extends current understanding by suggesting that enhanced neurocognitive function seen in athletes may transfer to fundamental tasks, giving insight into the generalizability of sport experience to neurocognitive functioning.  相似文献   
5.
6.
We explored the neural mechanisms allowing humans to report the subjective onset times of conscious events. Magnetoencephalographic recordings of neural oscillations were obtained while human subjects introspected the timing of sensory, intentional, and motor events during a forced choice task. Brain activity was reconstructed with high spatio-temporal resolution. Event-time introspection was associated with specific neural activity at the time of subjective event onset which was spatially distinct from activity induced by the event itself. Different brain regions were selectively recruited for introspection of different event types, e.g., the bilateral angular gyrus for introspection of intention. Our results suggest that event-time introspection engages specific neural networks to assess the contents of consciousness. Subjective event times should therefore be interpreted as the result of complex interactions between introspection and experience networks, rather than as direct reproduction of the individual’s conscious state or as a mere post hoc interpretation.  相似文献   
7.
Recent experiments have shown that the amplitudes of cortical gamma band oscillatory activities that occur during anesthesia are often greater than amplitudes of similar activities that occur without anesthesia. This result is apparently at odds with the hypothesis that synchronized oscillatory activities constitute the neural correlate of consciousness. We argue that while synchronization and oscillatory patterning are necessary conditions for consciousness, they are not sufficient. Based on the results of a binocular rivalry study of Fries et al. (1997), we propose that the degrees of oscillatory strength and synchronization of neuronal activities determine the degree of awareness those activities produce. On the other hand, the overal firing rates of neurons in cortical sensory areas are not correlated with the degree of awareness the activities of those neurons produce. The results of the experiment of Fries et al. (1997) appear to conflict with the results of another binocular rivalry experiment, in which monkeys were trained to pull a lever in order to report which stimulus object was being perceived (Leopold & Logothetis, 1996). In the latter experiment, it was demonstrated that the firing rates of neurons in striate cortex did not change during perceptual alterations, while 90% of neurons in inferior and superior temporal cortices changed their firing rate when the perceived image changed. This result led to the conclusion that activities in temporal cortex are correlated with visual awareness, but those in striate cortex are not. We argue that activities in temporal cortex contribute little, if anything, to perceptual awareness, and that their primary function is computational. Thus the correlation between the firing rates of neurons in these areas and the responses of the monkeys is due to the recognition of a particular stimulus object, which in turn is due to the computations made there.  相似文献   
8.
9.
Altered very low-frequency electroencephalographic (VLF-EEG) activity is an endophenotype of ADHD in children and adolescents. We investigated VLF-EEG case-control differences in adult samples and the effects of methylphenidate (MPH). A longitudinal case-control study was conducted examining the effects of MPH on VLF-EEG (.02–0.2 Hz) during a cued continuous performance task. 41 untreated adults with ADHD and 47 controls were assessed, and 21 cases followed up after MPH treatment, with a similar follow-up for 38 controls (mean follow-up = 9.4 months). Cases had enhanced frontal and parietal VLF-EEG and increased omission errors. In the whole sample, increased parietal VLF-EEG correlated with increased omission errors. After controlling for subthreshold comorbid symptoms, VLF-EEG case-control differences and treatment effects remained. Post-treatment, a time by group interaction emerged; VLF-EEG and omission errors reduced to the same level as controls, with decreased inattentive symptoms in cases. Reduced VLF-EEG following MPH treatment provides preliminary evidence that changes in VLF-EEG may relate to MPH treatment effects on ADHD symptoms; and that VLF-EEG may be an intermediate phenotype of ADHD. Further studies of the treatment effect of MPH in larger controlled studies are required to formally evaluate any causal link between MPH, VLF-EEG and ADHD symptoms.  相似文献   
10.
Cognitive scientists have tried to explain the neural mechanisms of unconscious mental states such as coma, epileptic seizures, and anesthesia-induced unconsciousness. However these types of unconscious states are different from the psychoanalytic unconscious. In this review, we aim to present our hypothesis about the neural correlates underlying psychoanalytic unconscious. To fulfill this aim, we firstly review the previous explanations about the neural correlates of conscious and unconscious mental states, such as brain oscillations, synchronicity of neural networks, and cognitive binding. By doing so, we hope to lay a neuroscientific ground for our hypothesis about neural correlates of psychoanalytic unconscious; parallel but unsynchronized neural networks between different layers of consciousness and unconsciousness. Next, we propose a neuroscientific mechanism about how the repressed mental events reach the conscious awareness; the lock of neural synchronization between two mental layers of conscious and unconscious. At the last section, we will discuss the data about schizophrenia as a clinical example of our proposed hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号