首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to assess language function during covert and overt naming tasks. Thirty right-handed, healthy adult volunteers underwent both naming tasks and cortical hemodynamics measurement using fNIRS. The overt naming task recruited the classical left-hemisphere language areas (left inferior frontal, superior and middle temporal, precentral, and postcentral gyri) exemplified by an increase in the oxy-Hb signal. Activations were bilateral in the middle and superior temporal gyri. However, the covert naming task recruited activation only in the left-middle temporal gyrus. The activation patterns reflected a major part of the functional network for overt word production, suggesting the clinical importance of fNIRS in the diagnosis of aphasic patients.  相似文献   
2.
Photo-induced phenomena in glasses excited by two-photon absorption have been studied and compared with those produced by bandgap illumination. The two-photon excitation of As2S3 gives a refractive-index increase, unaccompanied by photodarkening. Raman-scattering spectra show that the excitation increases the density of ‘wrong’ bonds. These observations are discussed and compared with photo-induced changes in SiO2.  相似文献   
3.
Experience-dependent changes of spine structure and number may contribute to long-term memory storage. Although several studies demonstrated structural spine plasticity following associative learning, there is limited evidence associating motor learning with alteration of spine morphology. Here, we investigated this issue in the cerebellar Purkinje cells using high voltage electron microscopy (HVEM). Adult rats were trained in an obstacle course, demanding significant motor coordination to complete. Control animals either traversed an obstacle-free runway or remained sedentary. Quantitative analysis of spine morphology showed that the density and length of dendritic spines along the distal dendrites of Purkinje cells were significantly increased in the rats that learned complex motor skills compared to active or inactive controls. Classification of spines into shape categories indicated that the increased spine density and length after motor learning was mainly attributable to an increase in thin spines. These findings suggest that motor learning induces structural spine plasticity in the cerebellar Purkinje neurons, which may play a crucial role in acquiring complex motor skills.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号