首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   5篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The present experiments examined the role of imagery ability in recall of either the terminal location or the distance of a preselected horizontal linear movement following changes in the recall starting position. Subjects were selected on the basis of their scores on a shortened version of the Betts Questionnaire upon Mental Imagery (Betts Q.M.I., Sheehan 1967). Both high and low imagers were assigned to one of four groups, HIL, LIL, HID, LID, the last letter indicating the movement cue (terminal location or distance moved) to be recalled. Recall of the appropriate movement cue from one of four new recall starting positions occurred after either a 5-sec or 30-sec unfilled retention interval. Analysis of constant error indicated all groups were unable to recall the specified movement cue independent of the other source of information, even when subjects were given explicit instructions to utilise an imagery strategy. The data corroborate our earlier findings that memory for self paced movements is based on an interaction of location and distance cues derived from the criterion movement.  相似文献   
2.
Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that participants underestimated the spatial requirements for wheelchair use but overestimated the spatial requirements for walking. Experiment 2 showed that their underestimation improved but was not completely eliminated after 8 days of practice passing through apertures. Analyses of wheelchair performance in the practice condition showed that the underestimation may have arisen from misperception of the positions of the hands when the participants were grasping the wheelchair hand-rims. The theoretical and practical implications of these findings are discussed.  相似文献   
3.
Ishihara M  Imanaka K 《Perception》2007,36(9):1375-1390
We conducted two experiments to investigate whether the motor preparation of manual aiming to a visual target is affected by either the physical characteristics (size or luminance contrast) or spatial characteristics (location) of the target. Reaction time (RT) of both finger lifting (ie stimulus-detection time) and manual aiming (ie movement-triggering time) to the onset of the target was measured. The difference of RT (DRT) between two tasks (ie the difference of task complexity) was examined to clarify the temporal characteristics of manual aiming per se during visuomotor integration. Results show classical characteristics: RT decreased as either the target size or luminance contrast increased. Furthermore, the task-complexity and target-location factors significantly interacted with each other, where the aiming RT was longer than the finger-lifting RT and the effects of target location on RT differed for each task. However, the task factor did not interact with either the size or luminance-contrast factor, implying that the motor preparation of manual aiming is associated with the spatial characteristics rather than the physical characteristics of the target. Inspection of DRT revealed that the time needed for motor preparation for an ipsilateral target was significantly shorter than that for a contralateral target. This was the case both for the left and for the right hand. Foveal targets required longer processing time, implying a disadvantageous function of motor preparation for the gazed target. The left-hand superiority for the target appearing in the left visual field was also observed. Such lateralised effect and left-hand advantage to the left visual field in manual aiming suggest that visuospatial information processing is activated during the preparation of aiming action, with faster processing in the right hemisphere.  相似文献   
4.
Interference between location and distance information in motor short-term memory has been hypothesized on the basis of the systematic pattern of undershooting and overshooting in movement reproduction that occurs when the starting position for reproduction movements is shifted. To determine the possible contribution of limb-specific kinesthetic information to this systematic undershooting-overshooting pattern, we compared the reproduction of linear arm positioning movements performed under either same-limb or switched-limb conditions. Ten subjects were assigned to either a location or distance cue condition, and each subject completed a total of 40 trials, 20 under same-limb and 20 under switched-limb conditions. Each trial consisted of criterion and reproduction movements, separated by a 10-s retention interval. The starting position for the reproduction movement was shifted by 0, 2, or 4 cm in either direction from that of the criterion movement. The systematic undershooting-overshooting pattern, which occurs when either the movement location or distance is reproduced, arose under both the same-limb and switched-limb conditions, suggesting that the primary cause of the location-distance interference is not limb-specific kinesthetic information. Rather, more abstract information in the form of a conceptual memory code appears to be the probable cause of the location distance interference phenomenon.  相似文献   
5.
The present study investigated the effect of psychological stress imposed on movement kinematics in a computer-simulated batting task involving a backward and forward swing of the forearm. The psychological stress was imposed by a mild electric stimulus following poor performance. Fourteen participants hit a moving ball with a horizontal lever and aimed at a distant target with as much accuracy as possible. The kinematic characteristics appearing under stress were delay of movement initiation, small amplitude of movement and low variability of spatial kinematic events between trials. These features were also found in previous studies in which the experimental task required high accuracy. The characteristic kinematics evident in the present study suggested that the movement strategies adopted by the stressed participants were similar to those that appear under high accuracy demand. Moreover, a correlation analysis between the onset times of kinematic events revealed that temporally consistent movements were reproduced under stress. Taken together, the present findings demonstrated that, under psychological stress, movement strategies tend to shift toward the production of more constrained trajectories, as is seen under conditions of high accuracy demand, even though the difficulty of the task itself does not change.  相似文献   
6.
A number of researchers (e.g. Kerr, 1978; Walsh, Russell, Imanaka, & James, 1979) have previously demonstrated interference between location and distance information in motor short-term memory. This interference manifests itself in a characteristic pattern of undershooting and overshooting, with reproduction movement location being drawn in the direction of criterion movement distance and, conversely, the distance of reproduction movements being influenced by the terminal location of the criterion movement. We investigated the effects of different cognitive strategies upon the appearance of this location-distance interference during the reproduction of movement location (Experiment 1) and distance (Experiments 2 and 3) in a linear arm positioning task. Experiment 1 compared performance in location reproduction between two strategy groups differing in the availability of explicit information about the change in starting position. The characteristic undershooting-overshooting interference pattern was observed for the group without the explicit information about the change in starting position but disappeared for the group in which explicit information about the change in starting position was provided. Experiment 2 examined the systematic undershooting-overshooting pattern in distance reproduction for a location strategy (involving some extrapolation of the start and end locations), a counting strategy, and a distance sense strategy (involving the use of visual imagery). The systematic response bias pattern disappeared when the subjects used a location strategy but was clearly observed for the subjects using the other two strategies. This finding was generally confirmed by Experiment 3, which showed a typical undershooting-overshooting pattern in distance reproduction for a counting/distance sense strategy but not for two location strategies (a general location and an explicit location strategy). The location strategies differed in the availability of explicit information about starting and end locations for both the criterion and reproduction movements. The results from these three experiments indicate that explicit information about the start andlor end locations prevents the usual interference between location and distance information from arising in movement reproduction. The notions of automatic and controlled processing and cerebral hemispheric specialization are discussed as potential explanations of these results and of the interference typically observed in motor short-term memory between distance and location information.  相似文献   
7.
These experiments assessed the interrelationship between location and distance cues in the coding of movements. In separate experiments subjects recalled either the terminal location or the distance of constrained (Experiment 1) or preselected (Experiment 2) movements following a 15-sec retention interval. Changes in direction amd amplitude of starting position were used to ascertain whether recall errors were related to these changes. The findings of both experiments indicated that location and distance were recalled with similar accuracy when the starting position was identical for the criterion and recall movement. However, analysis of constant errors when the recall starting position was varied in either direction clearly indicated neither terminal location nor distance are coded independently, and memory for movement is based on an interaction between these cues.  相似文献   
8.
In order to pass through apertures safely and efficiently, individuals must perceive the width of the aperture relative to (1) the width of the person-plus-object system and to (2) their (anticipated) movement speed. The present study investigated whether athletes who have extensive experience playing sports that require running through narrow spaces while wearing shoulder pads control their shoulder rotations differently while performing this behavior than athletes who lack such experience. Groups of athletes with experience competing in different sports (American football, rugby, and control athletes) performed a behavioral task in which they ran or walked between two tucking dummies with or without wearing shoulder pads. They also performed a psychophysical task in which they reported perceived width of the body and shoulder pads. When running through the apertures, the athletes who played American football exhibited smaller magnitudes and later onset of shoulder rotations than control athletes. No such difference was found when walking through the apertures. There was no difference in perception of the width of the shoulder pads among three groups. These findings suggest that performance of this behavior is action-scaled and task-specific.  相似文献   
9.
Three experiments were conducted to investigate the role of central and peripheral vision (CV and PV) in postural control. In Experiment 1, either the central or peripheral visual field were selectively stimulated using a circular random dot pattern that was either static or alternated at 5 Hz. Center of foot pressure (CoP) was used to examine postural sway during quiet standing under both CV and PV conditions. The results showed that, when the visual stimulus was presented in the periphery, the CoP area decreased and more so in the anterior-posterior (AP) than in the medio-lateral (ML) direction, indicating a characteristic directional specificity. There was no significant difference between the static and dynamic (alternating) conditions. Experiment 2 investigated the directional specificity of body sway found in Experiment 1 by having the trunk either be faced toward the stimulus display or perpendicularly to it, with the head always facing the display. The results showed that the stabilizing effect of peripheral vision was present in the direction of stimulus observation (i.e., the head/gaze direction), irrespective of trunk orientation. This suggested that head/gaze direction toward the stimulus presentation, rather than a biomechanical factor like greater mobility of the ankle joint in AP direction than in ML direction, was essential to postural stability. Experiment 3 further examined whether the stabilizing effect of peripheral vision found in Experiments 1 and 2 was caused because more dots (500) were presented as visual cues to the peripheral visual field than to the central visual field (20 dots) by presenting the same number of dots (20) in both conditions. It was found that, in spite of the equal number of dots, the postural sway amplitudes were larger for the central vision conditions than for the peripheral vision conditions. In conclusion, the present study showed that peripheral rather than central vision contributes to maintaining a stable standing posture, with postural sway being influenced more in the direction of stimulus observation, or head/gaze direction, than in the direction of trunk orientation, which suggests that peripheral vision operates primarily in a viewer-centered frame of reference characterized by the head/gaze direction rather than in a body-centered frame of reference characterized by the anatomical planes of the body.  相似文献   
10.
The effects of preparatory weak muscular contraction (pre-tension) have been investigated in a number of previous studies using tasks with either simple or choice responses to measure the reaction time (RT). These studies suggested that optimal pre-tension performed prior to a motor response tends to shorten the RTs. Using a simple RT task in which participants performed a grip response to a visual stimulus, the present study compared the RTs between two pre-tension conditions (self-selection and constraint) to investigate the effects of different instructions for pre-tension. Under the self-selection condition, participants were asked to determine their optimal pre-tension levels while attempting to give responses as fast as possible. Under the constraint condition, the participants developed a pre-tension at a target force determined by the experimenter. The target force was set at the same level as the pre-tension level maintained under the self-selection. Despite the fact that the pre-tension level manipulated was the same for both conditions, the RTs were significantly shorter under self-selection than under constraint. Moreover, the present study showed a positive correlation coefficient between the proportion of shortening in RT and the variation of pre-tension level. This indicated a performance trade-off between the stability of pre-tension and RTs. The result suggests that shorter RTs that occur under self-selection are primarily mediated by mental factors, such as attention allocation, rather than by the effects of peripheral muscular preparation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号