首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2012年   1篇
  2006年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Cut reductions are defined for a Kripke-style formulation of modal logic in terms of indexed systems of sequents. A detailed proof of the normalization (cut-elimination) theorem is given. The proof is uniform for the propositional modal systems with all combinations of reflexivity, symmetry and transitivity for the accessibility relation. Some new transformations of derivations (compared to standard sequent formulations) are needed, and some additional properties are to be checked. The display formulations of the systems considered can be presented as encodings of Kripke-style formulations.  相似文献   
2.
3.
S4C is a logic of continuous transformations of a topological space. Cut elimination for it requires new kind of rules and new kinds of reductions  相似文献   
4.
Grigori Mints 《Studia Logica》2012,100(1-2):279-287
A non-effective cut-elimination proof for modal mu-calculus has been given by G. J?ger, M. Kretz and T. Studer. Later an effective proof has been given for a subsystem M 1 with non-iterated fixpoints and positive endsequents. Using a new device we give an effective cut-elimination proof for M 1 without restriction to positive sequents.  相似文献   
5.
6.
Grigori Mints 《Synthese》2006,148(3):701-717
We put together several observations on constructive negation. First, Russell anticipated intuitionistic logic by clearly distinguishing propositional principles implying the law of the excluded middle from remaining valid principles. He stated what was later called Peirce’s law. This is important in connection with the method used later by Heyting for developing his axiomatization of intuitionistic logic. Second, a work by Dragalin and his students provides easy embeddings of classical arithmetic and analysis into intuitionistic negationless systems. In the last section, we present in some detail a stepwise construction of negation which essentially concluded the formation of the logical base of the Russian constructivist school. Markov’s own proof of Markov’s principle (different from later proofs by Friedman and Dragalin) is described.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号