首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  1992年   2篇
  1970年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Tactile expertise, resulting from extensive use of hands, has previously been shown to improve tactile perception in blind people and musicians and to be associated with changes in the central processing of tactile information. This study investigated whether expertise, due to precise and deliberate use of the fingers at work, relates to improved tactile perception and whether this expertise interacts with age. A tactile pattern and a frequency discrimination task were conducted while ERPs were measured in experts and nonexperts of two age groups within middle adulthood. Independently of age, accuracy was better in experts than in nonexperts in both tasks. Somatosensory N70 amplitudes were larger with increasing age and for experts than for nonexperts. P100 amplitudes were smaller in experts than in nonexperts in the frequency discrimination task. In the pattern discrimination task, P300 difference wave amplitude was reduced in experts and late middle-aged adults. In the frequency discrimination task, P300 was more equally distributed in late middle-aged adults. We conclude that extensive, dexterous manual work leads to acquisition of tactile expertise and that this expertise might delay, but not counteract, age effects on tactile perception. Comparable neurophysiological changes induced by age and expertise presumably have different underlying mechanisms. Enlarged somatosensory N70 amplitudes might result from reduced inhibition in older adults but from enhanced, specific excitability of the somatosensory cortex in experts. Regarding P300, smaller amplitudes might indicate fewer available resources in older adults and, by contrast, a reduced need to engage as much cognitive effort to the task in experts.  相似文献   
2.
3.
4.
5.
The current study addressed the question whether audiovisual (AV) speech can improve speech perception in older and younger adults in a noisy environment. Event-related potentials (ERPs) were recorded to investigate age-related differences in the processes underlying AV speech perception. Participants performed an object categorization task in three conditions, namely auditory-only (A), visual-only (V), and AVspeech. Both age groups revealed an equivalent behavioral AVspeech benefit over unisensory trials. ERP analyses revealed an amplitude reduction of the auditory P1 and N1 on AVspeech trials relative to the summed unisensory (A + V) response in both age groups. These amplitude reductions are interpreted as an indication of multisensory efficiency as fewer neural resources were recruited to achieve better performance. Of interest, the observed P1 amplitude reduction was larger in older adults. Younger and older adults also showed an earlier auditory N1 in AVspeech relative to A and A + V trials, an effect that was again greater in the older adults. The degree of multisensory latency shift was predicted by basic auditory functioning (i.e., higher hearing thresholds were associated with larger latency shifts) in both age groups. Together, the results show that AV speech processing is not only intact in older adults, but that the facilitation of neural responses occurs earlier in and to a greater extent than in younger adults. Thus, older adults appear to benefit more from additional visual speech cues than younger adults, possibly to compensate for more impoverished unisensory inputs because of sensory aging.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号