首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  2013年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Previous research has repeatedly found that the elderly demonstrate significant declines in direct measures of memory. This study examined verbal learning and memory in the young and old participants using the California Verbal Learning Test (CVLT). We hypothesized that slowing down the presentation rate of a list of words, therefore giving the participants more time to rehearse while learning new information, would decrease the normal differences found between the young and old adults on memory recall. However, at a faster presentation rate, the usual differences would be found. Participants took the CVLT, and correct recall responses were measured as a function of age and presentation rate. It was found, as expected, that at the faster presentation rate, the young did significantly better than the old on recall, but at the slower presentation rate, the differences between age groups diminished. It was concluded that by giving the elderly more time to rehearse information, age-related differences in memory recall could be greatly diminished.  相似文献   
3.
4.
5.
Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive deficits associated with normal aging and aging-related dementias. Trace eyeblink conditioning (EBC), a hippocampus- and forebrain-dependent learning paradigm, is impaired in both aged rabbits and aged humans, attributable in part to cholinergic dysfunction. In the present study, we examined the effects of galantamine (3 mg/kg), a cholinesterase inhibitor and nAChR allosteric potentiating ligand, on the acquisition of trace EBC in aged (30–33 months) and young (2–3 months) female rabbits. Trace EBC involves the association of a conditioned stimulus (CS) with an unconditioned stimulus (US), separated by a stimulus-free trace interval. Repeated CS–US pairings results in the development of the conditioned eyeblink response (CR) prior to US onset. Aged rabbits receiving daily injections of galantamine (Aged/Gal) exhibited significant improvements compared with age-matched controls in trials to eight CRs in 10 trial block criterion (P = 0.0402) as well as performance across 20 d of training [F(1,21) = 5.114, P = 0.0345]. Mean onset and peak latency of CRs exhibited by Aged/Gal rabbits also differed significantly [F(1,21) = 6.120/6.582, P = 0.0220/0.0180, respectively] compared with age-matched controls, resembling more closely CR timing of young drug and control rabbits. Galantamine did not improve acquisition rates in young rabbits compared with age-matched controls. These data indicate that by enhancing nicotinic and muscarinic transmission, galantamine is effective in offsetting the learning deficits associated with decreased cholinergic transmission in the aging brain.  相似文献   
6.
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号