首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
It has been shown that visual awareness in the blind hemifield of hemianopic cats that have undergone unilateral ablations of visual cortex can be restored by sectioning the commissure of the superior colliculus or by destroying a portion of the substantia nigra contralateral to the cortical lesion (the Sprague effect). We propose that the visual awareness that is recovered is due to synchronized oscillatory activities in the superior colliculus ipsilateral to the cortical lesion. These oscillatory activities are normally partially suppressed by the inhibitory, GABAergic contralateral nigrotectal projection, and the destruction of the substantia nigra, or the sectioning of the collicular commissure, disinhibits the collicular neurons, causing an increase in the extent of oscillatory activity and/or synchronization between activities at different sites. This increase in the oscillatory and synchronized character is sufficient for the activities to give rise to visual awareness. We argue that in rodents and lower vertebrates, normal visual awareness is partly due to synchronized oscillatory activities in the optic tectum and partly due to similar activities in visual cortex. It is only in carnivores and primates that visual awareness is wholly due to cortical activities. Based on von Baerian recapitulation theory, we propose that, even in humans, there is a period in early infancy when visual awareness is partially due to activities in the superior colliculus, but that this awareness gradually disappears as the nigrotectal projection matures.  相似文献   
2.
运用自然辩证法培养良好的临床思维,指导周围神经嵌压症的诊治过程,有助于获得最佳诊治效果。诊断过程中需全面了解理论知识,学会科学观察,兼顾整体与局部的关系,通过合理分析与综合,可以做出确切诊断。治疗过程中需对有关医师的技术进行评价,采用控制论及系统论方法指导治疗,才能恢复周围神经的结构与功能。  相似文献   
3.
Recent experiments have shown that the amplitudes of cortical gamma band oscillatory activities that occur during anesthesia are often greater than amplitudes of similar activities that occur without anesthesia. This result is apparently at odds with the hypothesis that synchronized oscillatory activities constitute the neural correlate of consciousness. We argue that while synchronization and oscillatory patterning are necessary conditions for consciousness, they are not sufficient. Based on the results of a binocular rivalry study of Fries et al. (1997), we propose that the degrees of oscillatory strength and synchronization of neuronal activities determine the degree of awareness those activities produce. On the other hand, the overal firing rates of neurons in cortical sensory areas are not correlated with the degree of awareness the activities of those neurons produce. The results of the experiment of Fries et al. (1997) appear to conflict with the results of another binocular rivalry experiment, in which monkeys were trained to pull a lever in order to report which stimulus object was being perceived (Leopold & Logothetis, 1996). In the latter experiment, it was demonstrated that the firing rates of neurons in striate cortex did not change during perceptual alterations, while 90% of neurons in inferior and superior temporal cortices changed their firing rate when the perceived image changed. This result led to the conclusion that activities in temporal cortex are correlated with visual awareness, but those in striate cortex are not. We argue that activities in temporal cortex contribute little, if anything, to perceptual awareness, and that their primary function is computational. Thus the correlation between the firing rates of neurons in these areas and the responses of the monkeys is due to the recognition of a particular stimulus object, which in turn is due to the computations made there.  相似文献   
4.
Based on theoretical considerations of Aurell (1979) and Block (1995), we argue that object recognition awareness is distinct from purely sensory awareness and that the former is mediated by neuronal activities in areas that are separate and distinct from cortical sensory areas. We propose that two of the principal functions of neuronal activities in sensory cortex, which are to provide sensory awareness and to effect the computations that are necessary for object recognition, are dissociated. We provide examples of how this dissociation might be achieved and argue that the components of the neuronal activities which carry the computations do not directly enter the awareness of the subject. The results of these computations are sparse representations (i.e., vector or distributed codes) which are activated by the presentation of particular sensory objects and are essentially engrams for the recognition of objects. These final representations occur in the highest order areas of sensory cortex; in the visual analyzer, the areas include the anterior part of the inferior temporal cortex and the perirhinal cortex. We propose, based on lesion and connectional data, that the two areas in which activities provide recognition awareness are the temporopolar cortex and the medial orbitofrontal cortex. Activities in the temporopolar cortex provide the recognition awareness of objects learned in the remote past (consolidated object recognition), and those in the medial orbitofrontal cortex provide the recognition awareness of objects learned in the recent past. The activation of the sparse representation for a particular sensory object in turn activates neurons in one or both of these regions of cortex, and it is the activities of these neurons that provide the awareness of recognition of the object in question. The neural circuitry involved in the activation of these representations is discussed.  相似文献   
5.
The awareness of thirst: proposed neural correlates   总被引:2,自引:0,他引:2  
The neural and endocrine bases of the generation of thirst are reviewed. Based on this review, a hierarchical system of neural structures that regulate water conservation and acquisition is proposed. The system includes primary sensory-receptive areas; secondary sensory structures (circumventricular organs), which detect levels of hormones, including angiotensin II and vasopressin, which are involved in generating thirst; preoptic and hypothalamic structures; and an area within the ventrolateral quadrant of the periaqueductal gray matter. Hodological and other data are used to determine the hierarchical organization of the system. Based on studies of the effects of lesions to various structures within the hierarchy of the system, it is proposed that the awareness of thirst in rodents is either entirely or predominantly due to neuronal activities in a subsection of the ventrolateral periaqueductal gray matter. It is also hypothesized that the awareness of thirst in primates is due to neuronal activities in both the ventrolateral periaqueductal gray and in a region within the medial prefrontal and anterior cingulate cortex.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号