首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Persons with Down syndrome (DS) suffer from prefrontal cortex dysfunction and deficits in executive functions. The current study examined the effects assisted cycling therapy (ACT) on short-term (STM) and working memory (WM) in adolescents with DS. During ACT, the cadence of participants on a stationary bicycle was augmented with an electrical motor to 180% of the voluntary cadence. Participants completed eight weeks of ACT (n?=?17), eight weeks of voluntary cycling (VC) at their own preferred cadence (n?=?16), or eight weeks of no cycling (np?≥?.149) and working memory improved only in the ACT group (Hedge’s g?=?1.66; p?=?.003). The results indicate that assisted high-cadence cycling (i.e. ACT) produces superior neural benefits in the dorsolateral prefrontal cortex compared to VC.  相似文献   
2.
The HKB model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985) of coordination has been predominantly applied to upper extremity stationary movements. It predicts increased variability of relative phase before a transition and a decrease after a transition. The authors of the present study extended the intralimb lower extremity locomotive research of F. J. Diedrich and W. H. Warren (1995) by conducting continuous treadmill walk-to-run and run-to-walk trials with 10 participants. Standard deviation of knee-ankle and hip-ankle relative phase did not increase before walk-to-run and run-to-walk transitions, and there was no decrease in knee-ankle relative phase variability after either transition. The results of this study did not provide strong support for application of the variability predictions of the HKB model of coordination to lower extremity intralimb coordination during gait transitions.  相似文献   
3.
ABSTRACT The authors' aim was to understand how persons with Down syndrome (DS) perform different tasks and to assess if there were any differences in performance based on the type of instructions. This is important because of neurological differences in persons with DS and neurological demands for performing different types of tasks. Twenty right-handed participants with DS, 20 chronological age-matched (CA), and 20 mental age-matched (MA) performed unimanual, bimanual, discrete, and continuous drumming following visual, auditory, and verbal instructions. Overall, discrete drumming was performed with shorter movement times than continuous drumming and unimanual drumming was performed with shorter movement amplitude than bimanual drumming. With respect to instructions, persons with DS performed with smaller amplitudes, thus more efficient movements, following the visual instructions than auditory and verbal instructions for all types of tasks, whereas CA performed similarly with all instructions and MA performed with smaller amplitudes with visual instructions than auditory instructions. These results suggest that visual instruction provides the best information for people with DS to aid in performance of many different types of movements.  相似文献   
4.
The present study investigated performance of unimanual and bimanual anti-phase and in-phase upper limb line drawing using three different types of cues. Fifteen Parkinson’s disease (PD) patients, 15 elderly, and 15 young adults drew lines away from and towards their body on a tabletop every 1000 ms for 30 s under three different cueing conditions: (1) verbal (‘up’, ‘down’); (2) auditory (high tone, low tone); (3) visual (target line switched from top to bottom). PD patients had larger and more variable amplitudes which may be related to the finding that they also produced more curvilinear movements than young and elderly adults. Consistent with previous research, when compared to the elderly and young adult group PD patients produced a mean relative phase which deviated more from the instructed coordination modes and they showed larger variability of relative phase in bimanual coordination, especially in anti-phase conditions. For all groups, auditory and verbal cues resulted in lower coefficient of variance of cycle time, lower variability of amplitude and lower variability of relative phase than visual cues. The benefit of auditory cues may be related to the timing nature of the task or factors related to the auditory cues (e.g., reduced attentional demands, more kinesthetic focus).  相似文献   
5.
This study investigated the relation between postural movement and upper-limb coordination stability. Adults produced bimanual circles using in-phase and anti-phase coordination patterns in time to an increasing rate metronome (i.e., movement-time instruction) in the horizontal (e.g., tabletop) and vertical (e.g., "wall" perpendicular to body) planes. All participants produced the instructed in- and anti-phase patterns. Coordination stability (i.e., SD of relative phase) was larger for anti-phase than in-phase patterns in both planes; however, anti-phase coordination stability was lower in the vertical plane than in the horizontal plane. Torso movement was larger during anti-phase coordination patterns in the horizontal plane, whereas it was larger during in-phase coordination patterns in the vertical plane. These results indicate that different orientations of the same task can produce different results for stability of coordination. This information may be important for performing and learning complex motor-coordination movements (e.g., playing musical instruments).  相似文献   
6.
7.
The authors examined the influence of different amounts of visual information when children 4 (CH4), 6 (CH6), and 8 (CH8) years of age, and adults (n = 12 in each group) performed a steady-state bimanual circle-drawing coordination task at self-selected speeds. All participants maintained in-phase coordination, but different strategies for maintaining the pattern emerged. A predictable relationship between variability and age was not observed, in that the CH8 group was not necessarily more consistent than the CH6 and CH4 groups. The authors conclude that children are transitioning from dependence on kinesthetic feedback to reliance on visual feedback around age 8, as suggested by L. Hay, C. Bard, M. Fleury, and N. Teasdale (1991; L. Hay, M. Fleury, C. Bard, & N. Teasdale, 1994; L. Hay & C. Redon, 1997), and that future studies are needed to further explore visual and kinesthetic feedback as potential control parameters during coordination tasks in developing children.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号