首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2009年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The present study examined affect- self-based explanatory models of relationships between daily events and daily well-being. Twice a week for up to 10 weeks, participants described the events that occurred each day and provided measures of their daily affect, self-esteem, and depressogenic thinking. Participants also provided trait-level measures of affect, depression, and self-esteem. Measures of daily well-being representing each model covaried jointly and independently with daily negative and positive events. Positive events buffered the effects of negative events on daily self-esteem and daily depressogenic thinking, whereas there was no buffering effect for daily affect. More depressed people were more reactive to positive events, and those higher in trait PA were less reactive to negative events. Buffering effects for self-esteem were pronounced for those with lower trait self-esteem, and buffering effects for daily depressogenic adjustment were now more pronounced for those with higher trait negative affect. The results suggest that affect- and self-based models provide complementary perspectives on relationships between psychological well-being and daily events.  相似文献   
2.
In endless facets of physiology, there are points of homeostatic balance, such that too much or too litttle of something can both be deleterious (i.e., an "inverse U" pattern). This is particularly true when considering glucocorticoids (GCs), the adrenals steroid secreted during stress. In the first part of this paper, I review a number of realms in which a paucity and an excess of GCs are both damaging. Some findings are classical (for example, concerning GC effects upon body weight), while some are quite recent and have considerable implications for both physiology and pathophysiology (for example, inverse U's of GC actions in the realm of immunity and neuronal survival). The second part of the review considers the far thornier issue of how such inverse U's of GC actions are generated on a cellular and molecular level. One solution that has evolved, primarily in the hippocampus within the nervous system, involves the presence of two different types of receptors for GCs within the same cells; so long as the two receptors have very different affinities and mediate opposing effects on some cellular endpoint, an inverse U will emerge. The second solution, found in a number of peripheral tissues, involves GCs having opposing effects on the amount of some signal being generated (e.g., an immune cytokine) and the sensitivity of target tissues to that signal; under conditions that appear to be physiologically relevant, inverse U's emerge from this pattern as well. The final section of this review considers the enormous role played by Bruce McEwen in the emergence of this literature. I suggest that while much of this obviously has to do with the facts that have come from his group, another substantial contribution is from his steadying and supportive personality, the veritable embodiment of homeostatic balance.  相似文献   
3.
This study investigated developmental and sex-related differences in affective decision making, using a two-deck version of Children's Gambling Task administered to 3- and 4-year-old children. The main findings were that 4-year-old children displayed better decision-making performance than 3-year-olds. This effect was independent of developmental changes in inductive reasoning, language, and working memory. There were also sex differences in decision-making performance, which were apparent only in 3-year-old children and favored girls. Moreover, age predicted awareness of task and the correlation between the latter and decision-making performance was significant, but only in 4-year-old children. This study thus indicates that there is a remarkable developmental leap in affective decision making, whose effects are apparent around the age of 4, which according to our results, also marks the age when the correlation of declarative knowledge and decision-making performance becomes significant.  相似文献   
4.
Despite broad agreement that understanding a personality construct requires integrating trait and state levels of analysis, few studies have explicitly attempted such an integration. The present study did this by examining the relationships between trait and state measures of empathy. State measures were taken daily, with a focus on the day level (within-person) covariation between empathy and daily mood and events. Twice a week for up to 10 weeks, 103 participants provided measures of their daily empathy and mood (NA and PA) and described the events that occurred each day. Multilevel random coefficient modeling analyses found that daily empathy covaried positively with the impact of daily positive and negative social events and with daily positive and negative affect. Empathy did not covary with achievement-related events. Analyses that simultaneously included empathy, mood, and events suggested that daily NA mediated relationships between daily empathy and daily negative social events. Although mean daily empathy was positively related to trait empathy, trait empathy did not moderate relationships between daily empathy and events nor between daily empathy and mood. Moreover, daily empathy did not covary with daily depressogenic thinking, need for cognition, nor self-esteem, suggesting that empathy is distinct from these constructs. Possible mechanisms linking social events and empathy, such as emotional contagion, are discussed.  相似文献   
5.
An extensive literature demonstrates that glucocorticoids (GCs), the adrenal steroids secreted during stress, can have a broad range of deleterious effects in the brain. The actions occur predominately, but not exclusively, in the hippocampus, a structure rich in corticosteroid receptors and particularly sensitive to GCs. The first half of this review considers three types of GC effects: a) GC-induced atrophy, in which a few weeks' exposure to high GC concentrations or to stress causes reversible atrophy of dendritic processes in the hippocampus; b) GC neurotoxicity where, over the course of months, GC exposure kills hippocampal neurons; c) GC neuroendangerment, in which elevated GC concentrations at the time of a neurological insult such as a stroke or seizure impairs the ability of neurons to survive the insult. The second half considers the rather confusing literature as to the possible mechanisms underlying these deleterious GC actions. Five broad themes are discerned: a) that GCs induce a metabolic vulnerability in neurons due to inhibition of glucose uptake; b) that GCs exacerbate various steps in a damaging cascade of glutamate excess, calcium mobilization and oxygen radical generation. In a review a number of years ago, I concluded that these two components accounted for the deleterious GC effects. Specifically, the energetic vulnerability induced by GCs left neurons metabolically compromised, and less able to carry out the costly task of containing glutamate, calcium and oxygen radicals. More recent work has shown this conclusion to be simplistic, and GC actions are shown to probably involve at least three additional components: c) that GCs impair a variety of neuronal defenses against neurologic insults; d) that GCs disrupt the mobilization of neurotrophins; e) that GCs have a variety of electrophysiological effects which can damage neurons. The relevance of each of those mechanisms to GC-induced atrophy, neurotoxicity and neuroendangerment is considered, as are the likely interactions among them.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号