首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In Pavlovian eyelid conditioning and adaptation of the vestibulo-ocular reflex, cerebellar cortex lesions fail to completely abolish previously acquired learning, indicating an additional site of plasticity in the deep cerebellar or vestibular nucleus. Three forms of plasticity are known to occur in the deep cerebellar nuclei: formation of new synapses, plasticity at existing synapses, and changes in intrinsic excitability. Only a cell-wide increase in excitability predicts that learning should generalize broadly from a training stimulus to other stimuli capable of supporting learning, whereas the alternatives predict that learning should be relatively specific to the training stimulus. Here we show that deep nucleus plasticity, as assessed by conditioned eyelid responses produced without input from the cerebellar cortex, is relatively specific to the training conditioned stimulus (CS). We trained rabbits to a tone or light CS with periorbital stimulation as the unconditioned stimulus (US), and pharmacologically disconnected the cerebellar cortex during a posttraining generalization test. The short-latency conditioned responses unmasked by this treatment showed strong decrement along the dimension of auditory frequency and did not generalize across stimulus modalities. These results cannot be explained solely by a cell-wide increase in the excitability of deep nucleus neurons, and imply that an input-specific mechanism in the deep cerebellar nucleus operates as well.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号