首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
New findings regarding the mechanisms of action of electro-convulsive therapy (ECT) have led to novel developments in treatment technique to further improve this highly effective treatment for major depression. These new approaches include novel placements, optimization of electrical stimulus parameters, and new methods for inducing more targeted seizures(eg, magnetic seizure therapy [MST]). MST is the use of transcranial magnetic stimulation to induce a seizure. Magnetic fields pass through tissue unimpeded, providing more control over the site and extent of stimulation than can be achieved with ECT. This enhanced control represents a means of focusing the treatment on target cortical structures thought to be essential to antidepressant response and reducing spread to medial temporal regions implicated in the cognitive side effects of ECT. MST is at an early stage of development. Preliminary results suggest that MST may have some advantages over ECT in terms of subjective side effects and acute cognitive functioning. Studies designed to address the antidepressant efficacy of MST are underway. As with all attempts to improve convulsive therapy technique, the clinical value of MST will need to be established through controlled clinical trials. This article reviews the experience to date with MST, and places this work in the broader context of other means of optimizing convulsive therapy in the treatment of depression.  相似文献   
2.
Perera T  Lisanby SH  Sackheim HA 《CNS spectrums》2001,6(7):565-8, 571-2
The latest and most generative biological theories of major depression center on two major hypotheses. The first focuses on the concept that hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis leads to many of the pathological changes in the brain that accompany major depression. The second posits that neurogenesis leads to the repair of depression-related injuries. These two hypotheses are complementary: the former alludes to the etiology or consequences of depression, while the latter suggests mechanisms of antidepressant action. Significant crosstalk occurs between these two systems at many levels. Protein kinase A (PKA) may play an important role in this crosstalk at the intracellular level of signaling cascades. PKA is involved in the formation of long-term potentiation and fear conditioning in response to stress. Chronic stress leads to the suppression of hippocampal activity, which may cause the hyperactivity of the HPA axis during melancholic depression. PKA is also involved in the stimulation of hippocampal neurogenesis after antidepressant treatment. In theory, neurogenesis may lead to the restoration of hippocampal function, and this may be the mechanism that leads to antidepressant-mediated normalization of HPA hyperactivity. Thus, PKA is active during processes that potentially lead to depression and other processes that lead to the resolution of the illness. These opposing processes may be mediated by separate PKA isozymes that activate two distinct pathways. This review highlights the dual role of this enzyme in two biological hypotheses pertaining to depression and its treatment.  相似文献   
3.
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号