首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Previous evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) in the basolateral amygdala (BLA) are critically involved in the acquisition of aversively based learning tasks. However, the role of NMDARs in the BLA in the consolidation of memory of aversive training has not been well elucidated. In the present study, the NMDAR antagonist AP-5 (1 or 3 microg) was infused into the BLA of male Sprague-Dawley rats immediately before, immediately after, or 6h after training on an inhibitory avoidance task with either a high footshock (HFS; only high dose of AP-5 given) or a low footshock (LFS; both doses of AP-5 given). The 48 h retention of animals given AP-5 (3 microg) immediately before or after HFS training was significantly impaired compared to that of vehicle-controls. In contrast, the retention of rats given AP-5 (3 microg) immediately after LFS training was significantly enhanced compared to that of vehicle-controls. AP-5 (3 microg) infusions administered 6h after training with either an HFS or LFS did not affect retention. These findings suggest that the NMDARs in the BLA are involved in both the acquisition and consolidation of aversive memory. In addition, the AP-5-induced enhancement of memory obtained with LFS training suggests that NMDARs in the BLA are involved in other mechanisms influencing synaptic transmission, in addition to their well-established role in neuroplasticity.  相似文献   
2.
3.
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats ( approximately 300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h later, they were tested for retention. Drugs were infused into the BLA and NAc shell or core immediately after training. Post-training intra-BLA infusions of DA enhanced retention, as assessed by latencies to enter the shock compartment on the retention test. Infusions of the general DA receptor antagonist cis-Flupenthixol (Flu) into the NAc shell (but not the core) blocked the memory enhancement induced by the BLA infusions of DA. In the reverse experiment, post-training intra-NAc shell infusions of DA enhanced retention and Flu infusions into the BLA blocked the enhancement. These findings indicate that BLA modulation of memory consolidation requires concurrent DA receptor activation in the NAc shell but not the core. Similarly, NAc shell modulation of memory consolidation requires concurrent DA receptor activation in the BLA. Together with previous findings, these results suggest that the dopaminergic innervation of the BLA and NAc shell is critically involved in the modulation of memory consolidation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号