首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In preparing this article on the possibilities we foresee in the Evangelical Church of the River Plate (Iglesia Evangélica del Río de la Plata– IERP) regarding the union of churches in our context, I realized that I first need to introduce the IERP in order to say what our vision is and then proceed to focus on our ecclesiology and role within ecumenical relationships in our area. This will then lead me to be better able to present our challenges and possibilities in the particular context of our location (in Argentina, Paraguay and Uruguay), and the path we find we can walk towards building new relationships among churches.  相似文献   
2.
Biobehavioral research, especially that which is conducted with prisoners, has become much more closely regulated in the last 30 years. State and federal law, as well as professional standards, regulate the conduct of many types of research; in the case of prisoners, this regulation is even more stringent. However, currently no mandatory, uniform, national regulatory or oversight process exists, and many privately funded research endeavors are operating in a regulatory void. In response to this, the National Bioethics Advisory Commission has argued for the creation of a single, national, independent regulatory body to oversee all human participant research, regardless of funding source. As ethicolegal research standards evolve alongside advances in science and technology, an appreciation of the history of prisoner research and an awareness of current standards is critical to conducting ethical prison research.  相似文献   
3.
Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.Eyelid conditioning is a form of associative learning that has proven useful for mechanistic studies of learning (Thompson 1986). All variants of eyelid conditioning involve pairing a conditioned stimulus (CS, typically a tone) with a reinforcing unconditioned stimulus (US, mild electrical stimulation near the eye) to promote learned eyelid closure in response to the CS (also known as a conditioned response). Delay eyelid conditioning, where the CS and US overlap in time (Fig. 1A , left), is largely unaffected by forebrain lesions (Solomon et al. 1986; Mauk and Thompson 1987; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002) and engages the cerebellum relatively directly (but see Halverson and Freeman 2006). Presentation of the tone and the US are conveyed to the cerebellum via activation of mossy fibers and climbing fibers, respectively (Fig. 1B; Mauk et al. 1986; Steinmetz et al. 1987, 1989; Sears and Steinmetz 1991; Hesslow 1994; Hesslow et al. 1999). In addition, output via a cerebellar deep nucleus is required for the expression of conditioned responses (McCormick and Thompson 1984). This relatively direct mapping of stimuli onto inputs and of output onto behavior makes delay eyelid conditioning a powerful tool for the analysis of cerebellar learning and computation (Mauk and Donegan 1997; Medina and Mauk 2000; Medina et al. 2000, 2002; Hansel et al. 2001; Ohyama et al. 2003).Open in a separate windowFigure 1.The procedures, neural pathways, and putative signals involved in delay and trace eyelid conditioning. (A) Stimulus timing for delay (left) and trace (right) training trials. For delay conditioning, the US overlaps in time with the tone CS. In this and subsequent figures, green is used to indicate the presentation of the CS for delay conditioning. For trace conditioning, the US is presented after CS offset, and “trace interval” refers to the period between CS offset and US onset. For convenience, we used red and maroon regions to represent the CS and trace interval, respectively. Sample conditioned eyelid responses are shown below, for which an upward deflection indicates closure of the eyelid. (B) Schematic representation of the pathways engaged by delay conditioning. The CS and US, respectively, engage mossy fibers and climbing fibers relatively directly, and forebrain input is not required for normal learning. (C) The signals hypothesized to engage the cerebellum during trace conditioning. The activity of mossy fibers directly activated by the tone CS does not significantly outlast the stimulus. Thus, a forebrain structure is thought to provide an input that overlaps in time with the US and is necessary to produce cerebellar learning.Trace eyelid conditioning, where the US is presented after tone offset (Fig. 1A, right), has attracted interest for its potential to reveal the nature of interactions between the forebrain and cerebellum as well as the learning mechanisms within these systems. This potential stems from the sensitivity of trace conditioning not only to lesions of cerebellum but also to lesions of hippocampus, medial prefrontal cortex (mPFC), or mediodorsal thalamic nucleus (Woodruff-Pak et al. 1985; Moyer Jr. et al. 1990; Kronforst-Collins and Disterhoft 1998; Weible et al. 2000; Powell et al. 2001; McLaughlin et al. 2002; Powell and Churchwell 2002; Simon et al. 2005). Given the general inability of forebrain lesions to affect delay conditioning, these results have promoted the general interpretation that the forebrain and cerebellum interact to mediate trace conditioning (Weiss and Disterhoft 1996; Clark and Squire 1998; Clark et al. 2002).Here we test the specific hypotheses that (Fig. 1C) (1) cerebellar learning requires that mossy fiber and climbing fiber inputs overlap in time (or nearly so) and (2) that cerebellar learning in trace conditioning occurs in response to a forebrain-driven mossy fiber input that outlasts the CS to overlap with the US rather than the inputs activated by the tone CS (Clark et al. 2002). The data provide direct support for both assertions and, together with recent anatomical studies (Buchanan et al. 1994; Weible et al. 2007), reveal a pathway between the mPFC and cerebellum that is necessary for the expression of trace eyelid responses. When combined with previous recordings from PFC in primates and rodents (Funahashi et al. 1989; Bodner et al. 1996; Fuster et al. 2000; Narayanan and Laubach 2006), these data support the hypothesis that trace eyelid conditioning is mediated by interactions between working memory-related persistent activity in mPFC and motor learning mechanisms in the cerebellum.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号