首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2015年   2篇
  2013年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1988年   1篇
  1986年   1篇
  1955年   1篇
  1954年   1篇
  1953年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Three experiments are reported that examine whether fast finger-tapping sequences are entirely planned before execution starts (advance planning), or if they can be started while planning is still under way (distributed planning). Subjects performed finger tapping sequences of three to eight taps at a high rate, under both simple and 2-choice reaction time (RT) conditions. The sequences differed in the location of an accentuated element within them. The RT to choose between sequences with different accent locations progressively decreased as an inverse function of the time-distance between the initial tap and the first point at which the alternative sequences differed. The shortening in choice reaction time (CRT) was never accompanied by noticeable changes in the inter-response times or force patterns of the tapping sequences. The RT to initiate sequences with accent location known beforehand (SRT condition) showed, in two of three experiments, a weak decreasing trend as the accentuated tap shifted away from the beginning of the sequence. The SRT results suggest a possible predominance of advance planning when the same sequence is repeated over a series of trials. The CRT results are taken as evidence that planning of the sequence beyond the unpredictable tap could be distributed before and after sequence initiation. Several factors are discussed that may influence the balance between planning in advance of, and planning in parallel with, sequence execution.  相似文献   
2.
Two groups of subjects differing in their musical expertise produced periodic finger-tapping sequences involving a pattern of accentuation. In some situations, the taps were synchronized with the clicks of a metronome. We recorded the trajectory of the subjects' finger displacement in the vertical plane, and the force and the moment of occurrence of the taps on the response key. Musicians tended to equalize the durations of the downstrokes at all positions in the sequence. Nonmusicians moved their finger quickly to produce the accent, and more slowly to produce the subsequent tap. These variations in the movement-execution time were partly compensated by opposite variations in the onsets of the movements, e.g., the short-duration movements were delayed. Despite these differences in their movement strategies, musicians and nonmusicians generated very similar tap-timing profiles. The intertap interval after the accent was lengthened regardless of the subjects' musical expertise and the metronome conditions (metronome present or absent). The lengthening did not depend on whether the interval before the accent was shortened (without the metronome) or not (with the metronome). It is suggested that an internal timekeeper may generate temporal goal points at which the keytaps should occur. The lengthening of the interval after the accent is attributed to transient changes in the working of the internal clock.  相似文献   
3.
When subjects are required to produce short sequences of equally paced finger taps and to accentuate one of the taps, the interval preceding the forceful tap is shortened and the one that immediately follows the accent is lengthened. Assuming that the tapping movements are triggered by an internal clock, one explanation attributes the rnistiming of the taps to central factors: The momentary rate of the clock is accelerated or decelerated as a function of motor preparation to, respectively, increase or decrease the movement force. This hypothesis predicts that the interresponse intervals measured between either tap movement onsets or movement terminations (taps) will show the same timing pattern. A second explanation for the observed interval effects is that the tapping movements are triggered by a regular internal clock but the timing of the successive taps is altered because the forceful movement is completed in less time than the other tap movements are. This "peripheral" hypothesis predicts regular timing of movement onsets but distorted timing of movement terminations. In the present study, the trajectories of the movements performed by subjects were recorded and the interresponse intervals were measured at the beginning and the end of the tapping movements. The results of Experiment 1 showed that neither model can fully explain the interval effects: The fast forceful movements were initiated with an additional delay that took into account the small execution time of these movements. Experiment 2 reproduced this finding and showed that the timing of the onset and contact intervals did not evolve with the repetition of trial blocks. Therefore, the assumption of an internal clock that would trigger the successive movements must be rejected. The results are discussed in the framework of a modified two-stage model in which the internal clock, instead of triggering the tapping movements, provides target time points at which the movements have to produce their meaningful effects, that is, contacts with the response key. The timing distortions are likely to reflect both peripheral and central components.  相似文献   
4.
 Wing and Kristofferson (1973) have shown that temporal precision in self-paced tapping is limited by variability in a central timekeeper and by variability arising in the peripheral motor system. Here we test an extension of the Wing–Kristofferson model to synchronization with periodic external events that was proposed by Vorberg and Wing (1994). In addition to the timekeeper and motor components, a linear phase correction mechanism is assumed which is triggered by the last or the last two synchronization errors. The model is tested in an experiment that contrasts synchronized and self-paced trapping, with response periods ranging from 200–640 ms. The variances of timekeeper and motor delays and the error correction parameters were estimated from the auto-covariance functions of the inter-response intervals in continuation and the asynchronies in synchronization. Plausible estimates for all parameters were obtained when equal motor variance was assumed for synchronization and continuation. Timekeeper variance increased with metronome period, but more steeply during continuation than during synchronization, suggesting that internal timekeeping processes are stabilized by periodic external signals. First-order error correction became more important as the metronome period increased, whereas the contribution of second-order error correction decreased. It is concluded that the extended two-level model accounts well for both synchronization and continuation performance. Received: 16 November 1998 / Accepted: 21 April 1999  相似文献   
5.
Single and alternating hand tapping were compared to test the hypothesis that coordination during rhythmic movements is mediated by the control of specific time intervals. In Experiment 1, an auditory metronome was used to indicate a set of timing patterns in which a 1-s interval was divided into 2 subintervals. Performance, measured in terms of the deviation from the target patterns and variability, was similar under conditions in which the finger taps were made with 1 hand or alternated between the 2 hands. In Experiment 2, the modality of the metronome (auditory or visual) was found to influence the manner in which the produced intervals deviated from the target patterns. These results challenge the notion that bimanual coordination emerges from coupling constraints intrinsic to the 2-hand system. They are in accord with a framework that emphasizes the control of specific time intervals to form a series of well-defined motor events.  相似文献   
6.
Three experiments are reported that examine whether fast finger-tapping sequences are entirely planned before execution starts (advance planning), or if they can be started while planning is still under way (distributed planning). Subjects performed finger tapping sequences of three to eight taps at a high rate, under both simple and 2-choice reaction time (RT) conditions. The sequences differed in the location of an accentuated element within them. The RT to choose between sequences with different accent locations progressively decreased as an inverse function of the time-distance between the initial tap and the first point at which the alternative sequences differed. The shortening in choice reaction time (CRT) was never accompanied by noticeable changes in the inter-response times or force patterns of the tapping sequences. The RT to initiate sequences with accent location known beforehand (SRT condition) showed, in two of three experiments, a weak decreasing trend as the accentuated tap shifted away from the beginning of the sequence. The SRT results suggest a possible predominance of advance planning when the same sequence is repeated over a series of trials. The CRT results are taken as evidence that planning of the sequence beyond the unpredictable tap could be distributed before and after sequence initiation. Several factors are discussed that may influence the balance between planning in advance of, and planning in parallel with, sequence execution.  相似文献   
7.
8.
Phase coupling between movement trajectories has been proposed as the basic mechanism of hand coordination in the production of bimanual rhythmic movements with a 1:2 frequency ratio. Here a central temporal coupling view is proposed as an alternative. Extending previous models of two-handed synchronic and alternate-hand tapping, we hypothesized that 1:2 tapping is performed under the control of a single internal timekeeper set at the frequency required for the fast hand. The fast hand is assumed to use every signal and the slow hand every other signal of the timekeeper, to produce actions coordinated in time. The model's predictions for the variance-covariance pattern of tap timing within and across hands were tested in an experiment that required tapping with both hands with 1:1 or 1:2 frequency ratio. The finger contact on the response plate was to be short or long, according to instruction. Prolonged finger contact entailed profound modifications in the movement trajectories but failed to modify the variance-covariance pattern of the tap timing. This pattern proved to conform to predictions under both the short and the long contact conditions, thus supporting the central temporal coupling hypothesis.  相似文献   
9.
Human visual attention is biased to rapidly detect threats in the environment so that our nervous system can initiate quick reactions. The processes underlying threat detection (and how they operate under cognitive load), however, are still poorly understood. Thus, we sought to test the impact of task-irrelevant threatening stimuli on the salience network and executive control of attention during low and high cognitive load. Participants were exposed to neutral or threatening pictures (with moderate and high arousal levels) as task-irrelevant distractors in near (parafoveal) and far (peripheral) positions while searching for numbers in ascending order in a matrix array. We measured reaction times and recorded eye-movements. Our results showed that task-irrelevant distractors primarily influenced behavioural measures during high cognitive load. The distracting effect of threatening images with moderate arousal level slowed reaction times for finding the first number. However, this slowing was offset by high arousal threatening stimuli, leading to overall shorter search times. Eye-tracking measures showed that participants fixated threatening pictures more later and for shorter durations compared to neutral images. Together, our results indicate a complex relationship between threats and attention that results not in a unitary bias but in a sequence of effects that unfold over time.  相似文献   
10.
Motor events are behaviorally meaningful, discrete entities (e.g., key strokes) that are generated at some specific portion of an effector's movement trajectory. Bimanual coordination may be conceptualized with reference to such discrete motor events or with reference to continuous movement trajectories. Studies inspired by the former approach suggest that hand coordination is primarily achieved by assigning a coherent timing goal structure to the motor events produced by each hand. Studies conducted with the latter approach have shown that between-hand interdependence may also arise from the cross-coupling of the command signals that generate each hand's motion. Little is known, however, about the relationships between timing-level coordination and trajectory-level coordination of the hands. Some aspects of these relationships are analyzed using data from experiments that involved bimanual finger tapping and circle drawing at identical and different frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号