首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   16篇
  国内免费   4篇
  185篇
  2024年   3篇
  2023年   4篇
  2022年   9篇
  2021年   7篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
11.
We illustrate a class of multidimensional item response theory models in which the items are allowed to have different discriminating power and the latent traits are represented through a vector having a discrete distribution. We also show how the hypothesis of unidimensionality may be tested against a specific bidimensional alternative by using a likelihood ratio statistic between two nested models in this class. For this aim, we also derive an asymptotically equivalent Wald test statistic which is faster to compute. Moreover, we propose a hierarchical clustering algorithm which can be used, when the dimensionality of the latent structure is completely unknown, for dividing items into groups referred to different latent traits. The approach is illustrated through a simulation study and an application to a dataset collected within the National Assessment of Educational Progress, 1996. The author would like to thank the Editor, an Associate Editor and three anonymous referees for stimulating comments. I also thank L. Scaccia, F. Pennoni and M. Lupparelli for having done part of the simulations.  相似文献   
12.
Recently, it has been recognized that the commonly used linear structural equation model is inadequate to deal with some complicated substantive theory. A new nonlinear structural equation model with fixed covariates is proposed in this article. A procedure, which utilizes the powerful path sampling for computing the Bayes factor, is developed for model comparison. In the implementation, the required random observations are simulated via a hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm. It is shown that the proposed procedure is efficient and flexible; and it produces Bayesian estimates of the parameters, latent variables, and their highest posterior density intervals as by-products. Empirical performances of the proposed procedure such as sensitivity to prior inputs are illustrated by a simulation study and a real example.This research is fully supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. CUHK 4346/01H). The authors are thankful to the Editor, the Associate Editor, and anonymous reviewers for valuable comments which improve the paper significantly, and grateful to ICPSR and the relevant funding agency for allowing use of the data in the example. The assistance of Michael K.H. Leung and Esther L.S. Tam is gratefully acknowledged.  相似文献   
13.
认知诊断是近些年教育测量研究中的热点,大多数的认知诊断模型仅适用于0~1评分的情况.本文提出一种有多个潜变量多个滑动参数的多级评分认知诊断模型——GP-D1NA,只要由评分标准和知识状态能确定理想反应模式,就可以利用此方法进行认知诊断分析.在该方法中,我们给出项目滑动矩阵的概念,将被试的观测得分均看成由某个理想得分的滑动,并采用EM算法估计滑动矩阵.在模拟研究中,采用每掌握一个属性得1分的评分标准,结果表明线性型、收敛型、发散型、无结构型和独立型五种属性层级结构均有较高的判准率.  相似文献   
14.
By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis are computed via observations of the latent variables generated by the Metropolis-Hastings algorithm, while the diagnostic measures are obtained via the conformal normal curvature. Seven perturbation schemes, including some perturbation schemes on latent vectors, are investigated. The proposed procedure is illustrated by a simulation study and a real example. Acknowledgment: This research is fully supported by a grant (CUHK 4243/02H) from the Research Grant Council of the Hong Kong Special Administration Region. The authors are indebted to ICPSR and the relevant funding agency for allowing use of their data, and to the Editor and reviewers for their valuable comments for improving the paper.  相似文献   
15.
A direct method in handling incomplete data in general covariance structural models is investigated. Asymptotic statistical properties of the generalized least squares method are developed. It is shown that this approach has very close relationships with the maximum likelihood approach. Iterative procedures for obtaining the generalized least squares estimates, the maximum likelihood estimates, as well as their standard error estimates are derived. Computer programs for the confirmatory factor analysis model are implemented. A longitudinal type data set is used as an example to illustrate the results.This research was supported in part by Research Grant DAD1070 from the U.S. Public Health Service. The author is indebted to anonymous reviewers for some very valuable suggestions. Computer funding is provided by the Computer Services Centre, The Chinese University of Hong Kong.  相似文献   
16.
In this paper, the constrained maximum likelihood estimation of a two-level covariance structure model with unbalanced designs is considered. The two-level model is reformulated as a single-level model by treating the group level latent random vectors as hypothetical missing-data. Then, the popular EM algorithm is extended to obtain the constrained maximum likelihood estimates. For general nonlinear constraints, the multiplier method is used at theM-step to find the constrained minimum of the conditional expectation. An accelerated EM gradient procedure is derived to handle linear constraints. The empirical performance of the proposed EM type algorithms is illustrated by some artifical and real examples.This research was supported by a Hong Kong UCG Earmarked Grant, CUHK 4026/97H. We are greatly indebted to D.E. Morisky and J.A. Stein for the use of their AIDS data in our example. We also thank the Editor, two anonymous reviewers, W.Y. Poon and H.T. Zhu for constructive suggestions and comments in improving the paper. The assistance of Michael K.H. Leung and Esther L.S. Tam is gratefully acknowledged.  相似文献   
17.
18.
This paper uses an extension of the network algorithm originally introduced by Mehta and Patel to construct exact tail probabilities for testing the general hypothesis that item responses are distributed according to the Rasch model. By assuming that item difficulties are known, the algorithm is applicable to the statistical tests either given the maximum likelihood ability estimate or conditioned on the total score. A simulation study indicates that the network algorithm is an efficient tool for computing the significance level of a person fit statistic based on test lengths of 30 items or less.  相似文献   
19.
    
Diagnostic models provide a statistical framework for designing formative assessments by classifying student knowledge profiles according to a collection of fine-grained attributes. The context and ecosystem in which students learn may play an important role in skill mastery, and it is therefore important to develop methods for incorporating student covariates into diagnostic models. Including covariates may provide researchers and practitioners with the ability to evaluate novel interventions or understand the role of background knowledge in attribute mastery. Existing research is designed to include covariates in confirmatory diagnostic models, which are also known as restricted latent class models. We propose new methods for including covariates in exploratory RLCMs that jointly infer the latent structure and evaluate the role of covariates on performance and skill mastery. We present a novel Bayesian formulation and report a Markov chain Monte Carlo algorithm using a Metropolis-within-Gibbs algorithm for approximating the model parameter posterior distribution. We report Monte Carlo simulation evidence regarding the accuracy of our new methods and present results from an application that examines the role of student background knowledge on the mastery of a probability data set.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号