排序方式: 共有72条查询结果,搜索用时 0 毫秒
21.
In recent years combinations of tense and modality have moved into the focus of logical research. From a philosophical point of view, logical systems combining tense and modality are of interest because these logics have a wide field of application in original philosophical issues, for example in the theory of causation, of action, etc. But until now only methods yielding completeness results for propositional languages have been developed. In view of philosophical applications, analogous results with respect to languages of predicate logic are desirable, and in this paper I present two such results. The main developments in this area can be split into two directions, differing in the question whether the ordering of time is world-independent or not. Semantically, this difference appears in the discussion whether T×W-frames or Kamp-frames (resp. Ockham-frames) provide a suitable semantics for combinations of tense and modality. Here, two calculi are presented, the first adequate with respect to Kamp-semantics, the second to T×W-semantics. (Both calculi contain an appropriate version of Gabbay's irreflexivity rule.) Furthermore, the proposed constructions of canonical frames simplify some of those which have hitherto been discussed. 相似文献
22.
The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL
ew
of the substructural logic FL
ew
. In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL
ew
(namely, a certain variety of FL
ew
-algebras) are term equivalent. This answers a longstanding question of Nelson [30]. Extensive use is made of the automated
theorem-prover Prover9 in order to establish the result.
The main result of this paper is exploited in Part II of this series [40] to show that the deductive systems N and NFL
ew
are definitionally equivalent, and hence that constructive logic with strong negation is a substructural logic over FL
ew
.
Presented by Heinrich Wansing 相似文献
23.
Chiara Tozzi 《The Journal of analytical psychology》2020,65(1):219-234
This paper explores the experience of horror. The term is usually understood collectively to refer to experiences of terrorism, racism and other conflicts; however, the paper explores the equal horror for the individual of facing deep and painful psychic contents and traumatic experiences. The paper explores the way that both C.G. Jung, through analysis of the psyche, and the author Stephen King, through his horror novels, have accepted and explored the experience of encountering ‘the dark half’ or ‘It’ that is the other within themselves, forming images and symbols capable of linking their personal experience to that of the collective. This encounter is transformed, as far as Jung is concerned by analytical psychology and for King by fiction, through an attitude of active imagination. This led both men to developing an ethical responsibility towards the images of the unconscious, as well as the personal and collective contents of human life. The paper depicts how encountering the ‘dark half’, through Jung and King can provide a Jungian analyst with a special attitude with which to deeply explore and ethically process the experience of horror in different fields, including therapeutic practice, analytical training and in the traumatic and conflictual facing of the other, with which, today as always, the world presents us. 相似文献
24.
Norihiro Kamide 《Studia Logica》2005,80(2-3):265-289
A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based
on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or
re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical
logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed
sequent calculi including CLS (a conservative extension of CL) and CLScw (a conservative extension of some bilattice logics, LK and S4). Completeness theorems are given for these calculi with respect
to phase semantics, for SLK (a conservative extension and fragment of LK and CLScw, respectively) with respect to a classical-like semantics, and for SS4 (a conservative extension and fragment of S4 and CLScw,
respectively) with respect to a Kripke-type semantics. The proposed framework allows for an embedding of the proposed calculi
into LK, S4 and CL. 相似文献
25.
Sergei P. Odintsov 《Studia Logica》2005,80(2-3):291-320
The article is devoted to the systematic study of the lattice εN4⊥ consisting of logics extending N4⊥. The logic N4⊥ is obtained from paraconsistent Nelson logic N4 by adding the new constant ⊥ and axioms ⊥ → p, p → ∼ ⊥. We study interrelations between εN4⊥ and the lattice of superintuitionistic logics. Distinguish in εN4⊥ basic subclasses of explosive logics, normal logics, logics of general form and study how they are relate.
The author acknowledges support by the Alexander von Humboldt-Stiftung and by Counsil for Grants under RF President, project
NSh - 2112.2003.1. 相似文献
26.
P. Schlenker 《Journal of Philosophical Logic》2007,36(3):251-307
Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this was not so by displaying an infinite series of sentences none of which is self-referential but which, taken
together, are paradoxical. Yablo’s paradox consists of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each s(i) says: For each k >
i, s(k) is false (or equivalently: For no k >
i is s(k) true). We generalize Yablo’s results along two dimensions. First, we study the behavior of generalized Yablo-series in which each
sentence s(i) has the form: For Q k >
i, s(k) is true, where Q is a generalized quantifier (e.g., no, every, infinitely many, etc). We show that under broad conditions all the sentences in the series must have the same truth value, and we derive a characterization of those values of Q for which the series is paradoxical. Second, we show that in the Strong Kleene trivalent logic Yablo’s results are a special case of a more general fact: under
certain conditions, any semantic phenomenon that involves self-reference can be emulated without self-reference. Various translation procedures that eliminate self-reference from a non-quantificational language are defined and characterized.
An Appendix sketches an extension to quantificational languages, as well as a new argument that Yablo’s paradox and the translations
we offer do not involve self-reference. 相似文献
27.
We show that several logics of common belief and common knowledge are not only complete, but also strongly complete, hence compact. These logics involve a weakened monotonicity axiom, and no other restriction on individual belief. The semantics is of the ordinary fixed-point type. 相似文献
28.
29.
Bruno Whittle 《Australasian journal of philosophy》2019,97(2):340-353
Kripke [1975] gives a formal theory of truth based on Kleene's strong evaluation scheme. It is probably the most important and influential that has yet been given—at least since Tarski. However, it has been argued that this theory has a problem with generalized quantifiers such as All(?, ψ)—that is, All ?s are ψ—or Most(?, ψ). Specifically, it has been argued that such quantifiers preclude the existence of just the sort of language that Kripke aims to deliver—one that contains its own truth predicate. In this paper I solve the problem by showing how Kleene's strong scheme, and Kripke's theory based on it, can in a natural way be extended to accommodate the full range of generalized quantifiers. 相似文献
30.