排序方式: 共有99条查询结果,搜索用时 15 毫秒
51.
52.
Cirquent calculus is a new proof-theoretic and semantic approach introduced by G. Japaridze for the needs of his theory of computability logic (CoL). The earlier article “From formulas to cirquents in computability logic” by Japaridze generalized formulas in CoL to circuit-style structures termed cirquents. It showed that, through cirquents with what are termed clustering and ranking, one can capture, refine and generalize independence-friendly (IF) logic. Specifically, the approach allows us to account for independence from propositional connectives in the same spirit as IF logic accounts for independence from quantifiers. Japaridze's treatment of IF logic, however, was purely semantical, and no deductive system was proposed. The present paper syntactically constructs a cirquent calculus system with clustering and ranking, sound and complete w.r.t. the propositional fragment of cirquent-based semantics. Such a system captures the propositional version of what is called extended IF logic, thus being an axiomatization of a nontrivial fragment of that logic. 相似文献
53.
We consider substitutions in order sensitive situations, having in the back of our minds the case of dynamic predicate logic (DPL) with a stack semantics. We start from the semantic intuition that substitutions are move instructions on stacks: the syntactic operation [y/x] is matched by the instruction to move the value of the y-stack to the x-stack. We can describe these actions in the positive fragment of DPLE. Hence this fragment counts as a logic for DPL-substitutions. We give a calculus for the fragment and prove soundness and completeness. 相似文献
54.
55.
We introduce necessary and sufficient conditions for a (single-conclusion) sequent calculus to admit (reductive) cut-elimination.
Our conditions are formulated both syntactically and semantically. 相似文献
56.
In this paper we introduce a paraconsistent reasoning strategy, Chunk and Permeate. In this, information is broken up into chunks, and a limited amount of information is allowed to flow between chunks. We start by giving an abstract characterisation of the strategy. It is then applied to model the reasoning employed in the original infinitesimal calculus. The paper next establishes some results concerning the legitimacy of reasoning of this kind – specifically concerning the preservation of the consistency of each chunk – and concludes with some other possible applications and technical questions. 相似文献
57.
58.
59.
Michael Tiomkin 《Journal of Applied Logic》2013,11(4):530-535
We introduce a sequent calculus that is sound and complete with respect to propositional contingencies, i.e., formulas which are neither provable nor refutable. Like many other sequent and natural deduction proof systems, this calculus possesses cut elimination and the subformula property and has a simple proof search mechanism. 相似文献
60.
The interpretation of propositions in Lukasiewicz's infinite-valued calculus as answers in Ulam's game with lies--the Boolean case corresponding to the traditional Twenty Questions game--gives added interest to the completeness theorem. The literature contains several different proofs, but they invariably require technical prerequisites from such areas as model-theory, algebraic geometry, or the theory of ordered groups. The aim of this paper is to provide a self-contained proof, only requiring the rudiments of algebra and convexity in finite-dimensional vector spaces. 相似文献