首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   71篇
  国内免费   134篇
  724篇
  2023年   10篇
  2022年   22篇
  2021年   28篇
  2020年   42篇
  2019年   28篇
  2018年   33篇
  2017年   40篇
  2016年   36篇
  2015年   28篇
  2014年   30篇
  2013年   109篇
  2012年   23篇
  2011年   27篇
  2010年   19篇
  2009年   25篇
  2008年   26篇
  2007年   21篇
  2006年   18篇
  2005年   25篇
  2004年   10篇
  2003年   17篇
  2002年   17篇
  2001年   11篇
  2000年   14篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有724条查询结果,搜索用时 15 毫秒
721.
ABSTRACT

Barsalou has recently argued against the strategy of identifying amodal neural representations by using their cross-modal responses (i.e., their responses to stimuli from different modalities). I agree that there are indeed modal structures that satisfy this “cross-modal response” criterion (CM), such as distributed and conjunctive modal representations. However, I argue that we can distinguish between modal and amodal structures by looking into differences in their cross-modal responses. A component of a distributed cell assembly can be considered unimodal because its responses to stimuli from a given modality are stable, whereas its responses to stimuli from any other modality are not (i.e., these are lost within a short time, plausibly as a result of cell assembly dynamics). In turn, conjunctive modal representations, such as superior colliculus cells in charge of sensory integration, are multimodal because they have a stable response to stimuli from different modalities. Finally, some prefrontal cells constitute amodal representations because they exhibit what has been called ‘adaptive coding’. This implies that their responses to stimuli from any given modality can be lost when the context and task conditions are modified. We cannot assign them a modality because they have no stable relation with any input type.

Abbreviatons: CM: cross-modal response criterion; CCR: conjuntive cross-modal representations; fMRI: functional magnetic resonance imaging; MVPA: multivariate pattern analysis; pre-SMA: pre-supplementary motor area; PFC: prefrontal cortex; SC: superior colliculus; GWS: global workspace  相似文献   
722.
Eighty-two participants listened to sentences and then judged whether two sequentially presented visual objects were the same. On critical trials, participants heard a sentence describe the motion of a ball toward or away from the observer (e.g., “The pitcher hurled the softball to you”). Seven hundred and fifty milliseconds after the offset of the sentence, a picture of an object was presented for 500 ms, followed by another picture. On critical trials, the two pictures depicted the kind of ball mentioned in the sentence. The second picture was displayed 175 ms after the first. Crucially, it was either slightly larger or smaller than the first picture, thus suggesting movement of the ball toward or away from the observer. Participants responded more quickly when the implied movement of the balls matched the movement described in the sentence. This result provides support for the view that language comprehension involves dynamic perceptual simulations.  相似文献   
723.
724.
Goal‐directed cognition is often discussed in terms of specialized memory structures like the “goal stack.” The goal‐activation model presented here analyzes goal‐directed cognition in terms of the general memory constructs of activation and associative priming. The model embodies three predictive constraints: (1) the interference level, which arises from residual memory for old goals; (1) the strengthening constraint, which makes predictions about time to encode a new goal; and (3) the priming constraint, which makes predictions about the role of cues in retrieving pending goals. These constraints are formulated algebraically and tested through simulation of latency and error data from the Tower of Hanoi, a means‐ends puzzle that depends heavily on suspension and resumption of goals. Implications of the model for understanding intention superiority, postcompletion error, and effects of task interruption are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号