首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   29篇
  国内免费   35篇
  2023年   16篇
  2022年   12篇
  2021年   12篇
  2020年   29篇
  2019年   44篇
  2018年   51篇
  2017年   40篇
  2016年   23篇
  2015年   24篇
  2014年   14篇
  2013年   206篇
  2012年   15篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   10篇
  2007年   12篇
  2006年   6篇
  2005年   11篇
  2004年   4篇
  2003年   12篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
171.
Infants of about 5 months of age who have just mastered the ability to reach succeed more frequently in contacting an object when they are seated upright than when they are supine or reclined. That effect of posture disappears in the subsequent months. Whether that effect can be attributed either to insufficient muscular strength or to insufficient control over the mechanically unstable arm was the subject of the present investigation. Kinematics and electromyography (EMG) of reaching movements of 8 sitting and supine infants at 12, 16, and 20 weeks of age were recorded. Maximum levels of shoulder torque as well as kinematic stability measures were similar in both postures. Coactivation levels and the frequency of on-off switching of muscles turned out to be higher in the sitting than in the supine posture. The authors suggest that the difference in reaching behavior resulted from the degree of error in the feedforward control signal that was allowed by the different postures rather than either insufficient muscular strength or insufficient control over the mechanically unstable arm.  相似文献   
172.
The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG–EMG and EMG–EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait.  相似文献   
173.
The manipulation of small objects requires continuous contributions from both predictive and reactive mechanisms. The authors aimed to study the development of predictive and reactive mechanisms used by children from 6 to 14 years of age to manage impulsive loading. The load of a handheld object was increased rapidly by the drop of a weight hung on the object. The drop was triggered either by the child (predictive condition) or by the examiner (reactive condition). Regardless of the condition, the control strategy was refined with age. Younger children were unable to adapt their grip force (GF) to the friction of their fingers, whereas the older children provided GF that was well adapted to their variable coefficient of friction, thereby producing a secure grip. This reflected either an inadequate amount of force or an inability to integrate cutaneous information from the fingers in younger children. Additionally, a modulation with age for both predictive and reactive mechanisms was observed. All together, the better predictive abilities and the more secure grip exhibited by older children allow decreased slipping and improved performance in an impulsive loading task.  相似文献   
174.
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 501 performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.  相似文献   
175.
Dual adaptation to different amounts or directions of prismatic displacement, or both, can be acquired and maintained with little mutual interference. Associative recalibration of the regional task- or workspace, contingent on differentiation of distinguishing sensory information, can explain such adaptation. In contrast, nonassociative realignment restores dimensional mapping among spatial representations. Methods for measuring the separate contributions of those 2 kinds of prism adaptation are identified in the present article. On the basis of a critique of dual-adaptation studies, the authors suggest that recalibration can explain the data but that the method used in those experiments confounded realignment and might have obscured the effectiveness of dual-calibration training.  相似文献   
176.
The authors investigated whether training can reduce bimanual directional interference by using a star-line drawing paradigm, Participants (N = 30) were required to perform rhythmical arm movements with identical temporal but differing directional demands. Moreover, the effectiveness of part-task training in which each movement was practiced in isolation was compared with that of whole-task training in which only combined movements were performed. Findings revealed that bimanual training substantially reduced spatial interference, but unimanual training did not. The authors therefore concluded that the spatial coupling of the limbs is not implemented in a rigid way; instead, the underlying neural correlate can undergo plastic changes induced by training. Moreover, the practical implication that emerged from the present study is that athletic, musical, or ergonomic skills that require a high degree of interlimb coordination are best served by whole-task practice.  相似文献   
177.
The authors of the present study investigated the apparent contradiction between early and more recent views of knowledge of results (KR), the idea that how one is engaged before receiving KR may not be independent of how one uses that KR. In a 2 × 2 factorial design, participants (N = 64) practiced a simple force-production task and (a) were required, or not required, to estimate error about their previous response and (b) were provided KR either after every response (100%) or after every 5th response (20%) during acquisition. A no-KR retention test revealed an interaction between acquisition error estimation and KR frequencies. The group that received 100% KR and was required to error estimate during acquisition performed the best during retention. The 2 groups that received 20% KR performed less well. Finally, the group that received 100% KR and was not required to error estimate during acquisition performed the poorest during retention. One general interpretation of that pattern of results is that motor learning is an increasing function of the degree to which participants use KR to test response hypotheses (J. A. Adams, 1971; R. A. Schmidt, 1975). Practicing simple responses coupled with error estimation may embody response hypotheses that can be tested with KR, thus benefiting motor learning most under a 100% KR condition. Practicing simple responses without error estimation is less likely to embody response hypothesis, however, which may increase the probability that participants will use KR to guide upcoming responses, thus attenuating motor learning under a 100% KR condition. The authors conclude, therefore, that how one is engaged before receiving KR may not be independent of how one uses KR.  相似文献   
178.
In 2 experiments, the authors manipulated the frequency of concurrent feedback to discern the effects on learning. In each experiment, participants (N = 48, Experiment 1; N = 36, Experiment 2) attempted to reproduce a criterion force-production waveform (5 s in duration) presented on the computer monitor. Consistent with the guidance hypothesis, the results of Experiment 1 indicated very strong guiding effects of concurrent feedback and strong dependence on the feedback, as indicated by participants' extremely poor performance upon feedback withdrawal in retention. As predicted by the guidance hypothesis, dependence on the feedback was reduced as a result of reducing the frequency of the concurrent feedback. The results of Experiment 2 indicated that one can enhance learning by providing concurrent and terminal feedback on 1 trial, with no feedback on the subsequent trial. In that way, the strong guiding effects of concurrent feedback could be realized and the beneficial effects of terminal feedback could also be achieved.  相似文献   
179.
Using the general framework of schema theory, and building on it, the present article takes a connectionist approach to motor learning and to contextual interference effects. These phenomena were simulated in an exploratory manner in neural networks. The outcome closely reflects previous research with humans. In a simulated ballistic movement task, networks performed worse during practice but showed better transfer when target movement distances were presented in a random rather than a blocked fashion. Connectionism provides a parsimonious account of the effect in terms of properties inherent in the parallel distributed network.  相似文献   
180.
The effects of practice (Experiment 1) and parameter variability (Experiment 2) on the learning of generalized motor programs (GMPs) and movement parameterization were investigated In each experiment, 2 tasks with different relative force-time structures were tested. Participants (N = 32, Experiment (N = 40, Experiment 2) attempted to exert a pattern of force that resembled in force and time a waveform that was displayed on a computer monitor. In both experiments, the analysis suggested that the GMP, although refined over practice, was relatively stable (i.e., resistant to decay and interference), even early in practice (after 20 trials). In addition, the results indicated that constant and variable parameter practice did not differentially affect GMP learning but did degrade the learning of the parameter that was not varied. The data provided additional evidence for the dissociation of the GMP and the parameterization processes proposed in GMP theory. Contrary to schema theory, the present data suggest an interdependence between the force and the time parameters: The manipulation of 1 of the parameters has a negative effect on the learning of the other parameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号