首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   0篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2020年   9篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   33篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  1999年   1篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
71.
The process by which the brain controls single-joint movements (SJM) is still not well understood. Some studies have defined rules describing the duration and magnitude of the agonist and antagonist muscles. Therefore, the purpose of this study was to analyze scientific publications about the electromyographic characteristics of SJM performed by patients with Parkinson's disease. A bibliographical review of the years 1989–2015 was performed using keywords such as electromyography, upper limb, and Parkinson's disease. After applying the inclusion criteria, 8 articles were included for analysis. The literature indicates that despite the lack of studies, it is possible to assume that considering the SJM, those with Parkinson's disease only control the magnitude of electromyography activation, being consistent only with the pulse-height theory control.  相似文献   
72.
The authors explored how trunk compensation and hand symmetry in stroke survivors and healthy controls were affected by the distance and height of virtual targets during a bimanual reaching task. Participants were asked to reach to 4 different virtual targets set at: 90% of their arm length at shoulder, xiphoid process, and knee height, and 50% of their arm length at xiphoid process height. For the stroke group, for all targets, the hands’ movements were more asymmetrical than those of the healthy group, with more asymmetry observed in the direction of gravity, and trunk forward displacement values were larger and more variable. The knee targets had the largest trunk displacement values; index of curvature and trunk displacement were strongly correlated with participants’ impairment scores. A strong correlation was found between the hands’ asymmetry in the anterior or posterior direction for the shoulder targets, and the impairment scores. The results suggest that target height influences the degree of trunk compensation and hand symmetry during bimanual reaching by hemiparetic participants.  相似文献   
73.
Abstract

The objective of this study was to examine the effects of muscle strength training on knee kinematics/kinetics and muscle activation patterns during anticipated side-step cutting. Three-dimensional knee kinematics/kinetics data and muscle activation of selected lower extremity muscles were measured while performing cutting before and after completing 10-week circuit strength training mixed typical resistance training and power training (intervention) or no training (control) from 25 female subjects. The muscle strength of quadriceps and hamstrings were measured before and after training using isokinetic dynamometer. No statistically significant differences were observed in quadriceps and hamstrings muscle strength, all kinematic/kinetic variables, and muscle activation for the control group. Both quadriceps (p?=?0.005) and hamstrings (p?=?0.030) muscle strength were increased after training. An increased biceps femoris (p?=?0.003) and H:Q ratio of activation (p?=?0.016), as well as decreased gastrocnemius muscle activation (p?=?0.012) during pre-activation phase in intervention group were found. No significant differences were found in knee kinematics and kinetics both at the time frame of the initial contact and the peak tibial anterior shear force after training. In conclusion, muscle strength training altered some muscle activations of lower extremity muscles, which might affect the risk of ACL injury, but it did not change the kinematic/kinetic parameters.  相似文献   
74.
Pedestrians can avoid collisions with other pedestrians by modifying some combination of their velocity and their path. The authors investigated how path constraints (constrained or unconstrained), interferer velocity (slow or fast), and vision (looking or not looking; time spent looking at the interferer) influenced collision avoidance to an oblivious interferer walking on a perpendicular path. Ten participants walked 6 m to either a point or line target on either a constrained or unconstrained path while wearing an eye-tracking device and avoiding an oblivious interferer that walked at 2 speeds. Looking behavior and interferer velocity were reliable predictors of determining whether a pedestrian would pass in front of or behind the interferer, while path constraints were less reliable. These findings highlight the degeneracy in human movement systems and suggest that, in complex environments, behavior may not always be optimized for efficiency.  相似文献   
75.
The authors examined the efficacy of an 8-week regimen combining repetitive task-specific practice (RTP) with a myoelectric brace (RTP+Myomo) on paretic upper extremity (UE; use in valued activities, perceived recovery, and reaching kinematics) in 12 subjects (4 men; M age = 53.5 years; mean time poststroke = 61.7 months). Seven subjects were administered RTP+Myomo therapy, and 5 were administered RTP only. Both groups participated in individualized, 45-min therapy sessions occurring 3 days/week over an 8-week period. The arm, hand ability, activities of daily living, and perceptions of recovery subscales of the Stroke Impact Scale (SIS), as well as UE reaching kinematics, assessed before and after the intervention. Subjects in the RTP+Myomo group showed greater improvements on all SIS subscales, with the recovery scale reaching statistical significance (p = .03). Subjects in the RTP-only group showed a greater increase in hand velocity in the reach up task (p = .02), but no changes were observed in the range of shoulder flexion or elbow extension during reaching. None of the changes in kinematic outcome measures significantly correlated with any of the changes in SIS subscales. RTP integrating myoelectric bracing may be more beneficial than RTP only in improving self-reported function and perceptions of overall recovery. The authors observed no changes in the range of elbow extension, and no relationship between self-reported improvements and changes in reaching kinematics.  相似文献   
76.
A recent report in Consciousness and Cognition provided evidence from a study of the rubber hand illusion (RHI) that supports the multisensory principle of inverse effectiveness (PoIE). I describe two methods of assessing the principle of inverse effectiveness (‘a priori’ and ‘post-hoc’), and discuss how the post-hoc method is affected by the statistical artefact of ‘regression towards the mean’. I identify several cases where this artefact may have affected particular conclusions about the PoIE, and relate these to the historical origins of ‘regression towards the mean’. Although the conclusions of the recent report may not have been grossly affected, some of the inferential statistics were almost certainly biased by the methods used. I conclude that, unless such artefacts are fully dealt with in the future, and unless the statistical methods for assessing the PoIE evolve, strong evidence in support of the PoIE will remain lacking.  相似文献   
77.
The critical assumption of linearity between force and force variability for rapid movements made by Schmidt, Zelaznik, and Frank (1978) was studied in four experiments in the present study. The first three experiments extended earlier work showing linearity between force and force variability for submaximal force levels in static and dynamic contractions. However, at near-maximal force levels, when force was increased, force variability leveled off and then decreased in both static and dynamic conditions. A fourth experiment using the rapid-timing paradigm showed that increased submaximal loads on the movement produced slight decreases in VE. But when the loads were larger, where force and force variability were no longer linearly related, increased load led to larger decreases in VE. These observations led to the hypothesis that VEt is linearly related to the ratio of force variability to force; data from two experiments are presented that support this idea. The motor-output variability theory seems to hold for a wide range of sub-maximal force values, but needs modification for those conditions where near-maximal forces are required.  相似文献   
78.
Gravity reduction affects the energetics and natural speed of walking and running. But, it is less clear how segmental coordination is altered. Various devices have been developed in the past to study locomotion in simulated reduced gravity. However, most of these devices unload only the body center of mass. The authors reduced the effective gravity acting on the stance or swing leg to 0.16g using different simulators. Locomotion under these conditions was associated with a reduction in the foot velocity and significant changes in angular motion. Moreover, when simulated reduced gravity directly affected the swing limb, it resulted in significantly slower swing and longer foot excursions, suggesting an important role of the swing phase dynamics in shaping locomotor patterns.  相似文献   
79.
The authors examined how varying the content of verbal-motor instructions and requesting an internal versus external focus influenced the kinematics and outcome of a golf putting task. On Day 1, 30 novices performed 120 trials with the instruction to focus attention either on performing a pendulum-like movement (internal) or on the desired ball path (external). After 20 retention trials on Day 2, they performed 20 transfer trials with the opposite instruction. Group differences for retention and a group by block interaction showed that external instruction enhanced movement outcome. Kinematic data indicated that specific instruction content influenced outcomes by eliciting changes in movement execution. Switching from the external to the internal focus instruction resulted in a more pendulum-like movement.  相似文献   
80.
The authors examined the means by which people vary movement parameters to satisfy more than 1 constraint at a time in a repetitive motor task. The authors expected that when participants (N = 12) were simultaneously confronted with spatial and temporal constraints in an ellipse-drawing task, they would either exploit the intrinsic amplitude-frequency relationships or activate less natural control regimes to prioritize their movement goals. By focusing on local amplitude and frequency errors and parameter changes from 1 movement to the next, the authors distinguished parameter changes that reflected exploitation of biomechanics from those that required deliberate control. The findings demonstrated that at low movement speeds, participants can pursue multiple movement goals simultaneously; at higher speeds, their capacity to satisfy multiple task goals is reduced. The authors used a new method of inferring deliberate control from movement kinematics in the present study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号