首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   1篇
  149篇
  2022年   22篇
  2021年   30篇
  2020年   20篇
  2019年   5篇
  2018年   18篇
  2017年   7篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   4篇
  2011年   5篇
  2009年   2篇
  2007年   1篇
  2003年   1篇
  1998年   2篇
  1994年   1篇
  1993年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
41.
Advanced driver assistance systems (ADAS) are taking over an increasing part of the driving task and are supporting the introduction of semi- and fully automated vehicles. As a consequence, a mixed traffic situation is developing where vehicles equipped with automated systems taking over the lateral and longitudinal control of the vehicle will interact with unequipped vehicles (UV) that are not fitted with such automated systems. Different forms of automation are emerging and it appears that regardless of which form is going to become popular on our roads, there is a consensus developing that it will be accompanied by a reduction in time headway (THW). The present simulator study examined whether a ‘contagion’ effect from the short THW held in platoons on the UV drivers would occur. Thirty participants were asked to follow a lead vehicle (LV) on a simulated motorway in three different traffic conditions: surrounding traffic including (1) platoons with short following distance (THW = 0.3 s), (2) large following distance (THW = 1.4 s) or (3) no platoons at all. Participants adapted their driving behaviour by displaying a significant shorter average and minimum THW while driving next to a platoon holding short THWs as when THW was large. They also spent more time keeping a THW below a safety threshold of 1 s. There was no carryover effect from one platoon condition to the other, which can be interpreted as an effect that is not lasting in time. The results of this study point out the importance of examining possibly negative behavioural effects of mixed traffic on UV drivers.  相似文献   
42.
    
Adaptive cruise control (ACC), a driver assistance system that controls longitudinal motion, has been introduced in consumer cars in 1995. A next milestone is highly automated driving (HAD), a system that automates both longitudinal and lateral motion. We investigated the effects of ACC and HAD on drivers’ workload and situation awareness through a meta-analysis and narrative review of simulator and on-road studies. Based on a total of 32 studies, the unweighted mean self-reported workload was 43.5% for manual driving, 38.6% for ACC driving, and 22.7% for HAD (0% = minimum, 100 = maximum on the NASA Task Load Index or Rating Scale Mental Effort). Based on 12 studies, the number of tasks completed on an in-vehicle display relative to manual driving (100%) was 112% for ACC and 261% for HAD. Drivers of a highly automated car, and to a lesser extent ACC drivers, are likely to pick up tasks that are unrelated to driving. Both ACC and HAD can result in improved situation awareness compared to manual driving if drivers are motivated or instructed to detect objects in the environment. However, if drivers are engaged in non-driving tasks, situation awareness deteriorates for ACC and HAD compared to manual driving. The results of this review are consistent with the hypothesis that, from a Human Factors perspective, HAD is markedly different from ACC driving, because the driver of a highly automated car has the possibility, for better or worse, to divert attention to secondary tasks, whereas an ACC driver still has to attend to the roadway.  相似文献   
43.
Field research into the topic of withholding effort and its variants (shirking, loafing, free riding, and job neglect) has been limited due to a lack of measures that are applicable to organizational settings. This study used a multi-phase process to ascertain a measure of withholding effort that can be used in organizational settings. Items were generated through literature review and discussions with practitioners; culled by the authors; and tested in a field study in multiple, diverse organizations. Exploratory and confirmatory factor analyses found the construct of withholding effort to be multidimensional, but not necessarily as previous theoretical work in the area would suggest. Correlations of the various dimensions of withholding effort scales with existing scales tapping a wide range of employee attitudes were consistent with a priori expectations. Implications for the use of these scales in future workplace research and their practical application in organizations are discussed.  相似文献   
44.
The present study evaluated the efficacy of using contingent-interrupted music in treating the disruptive bus-riding behavior of an 8-year-old profoundly retarded female. Music was played during each bus ride as long as the subject was sitting appropriately, and interrupted contingent upon each response defined as disruptive bus riding, during an ABCDCDCDA design. A significant reduction in disruptive bus riding occurred with each introduction of contingent-interrupted music. The treatment procedure described in this report was easy to administer, produced rapid treatment gains, and showed virtually no regression during an 8-week follow-up period.  相似文献   
45.
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses.  相似文献   
46.
The Tactile Detection Response Task (TDRT) has been used to assess the cognitive workload of driver distraction with response time and miss rate as metrics of cognitive workload. However, it is not clear which metric is more sensitive and whether sensitivity is maintained for visual tasks. The objective of this study was to assess the sensitivity of the TDRT to changes in cognitive workload and to examine whether the sensitivity depends on task modality. A driving simulator study was conducted with 24 participants. The study included restaurant selection tasks with three presentation modalities (auditory, visual, and hybrid) and two difficulty levels (low and high). The high difficulty level was designed to be more cognitively demanding than the low difficulty level. Mixed-effects models were applied to examine the TDRT metrics and task difficulty level. The model controlled for age group, gender, and included a random effect for participants. The high difficulty level of the auditory tasks significantly increased the likelihood of missing a TDRT stimulus. No statistically significant differences were observed for visual and hybrid tasks. TDRT response time was not significantly associated with the difficulty level, regardless of task modality. In this study, the binary outcome TDRT miss was thus considered a more sensitive metric of cognitive workload than TDRT response time. TDRT response time can still be used to measure cognitive workload when tasks are relatively easy and the TDRT miss rate is close to zero. In addition, the sensitivity of the TDRT miss diminished for tasks that involved a visual component. Researchers who use TDRT to measure the cognitive workload associated with visual tasks should be aware of this limitation.  相似文献   
47.
    
Driver distraction is one major cause of road traffic accidents. In order to avoid distraction-related accidents it is important to inhibit irrelevant stimuli and unnecessary responses to distractors and to focus on the driving task, especially when unpredictable critical events occur. Since inhibition is a cognitive function that develops until young adulthood and decreases with increasing age, young and older drivers should be more susceptible to distraction than middle-aged drivers. Using a driving simulation, the present study investigated effects of acoustic and visual distracting stimuli on responses to critical events (flashing up brake lights of a car ahead) in young, middle-aged, and older drivers. The task difficulty was varied in three conditions, in which distractors could either be ignored (perception-only), or required a simple response (detection) or a complex Go-/NoGo-response (discrimination). Response times and error rates to the critical event increased when a simultaneous reaction to the distractor was required. This distraction effect was most pronounced in the discrimination condition, in which the participants had to respond to some of the distracting stimuli and to inhibit responses to some other stimuli. Visual distractors had a stronger impact than acoustic ones. While middle-aged drivers managed distractor inhibition even in difficult tasks quite well (i.e., when responses to distracting stimuli had to be suppressed), response times of young and old drivers increased significantly, especially when distractor stimuli had to be ignored. The results demonstrate the high impact of distraction on driving performance in critical traffic situations and indicate a driving-related inhibition deficit in young and old drivers.  相似文献   
48.
    
A review of the literature on autonomous vehicles has shown that they offer several benefits, such as reducing traffic congestion and emissions, and improving transport accessibility. Until the highest level of automation is achieved, humans will remain an important integral of the driving cycle, which necessitates to fully understand their role in automated driving. A difficult research topic involves an understanding of whether a period of automated driving is likely to reduce driver fatigue rather than increase the risk of distraction, particularly when drivers are involved in a secondary task while driving. The main aim of this research comprises assessing the effects of an automation period on drivers, in terms of driving performance and safety implications. A specific focus is set on the car-following maneuver. A driving simulator experiment has been designed for this purpose. In particular, each participant was requested to submit to a virtual scenario twice, with level-three driving automation: one drive consisting of Full Manual Control Mode (FM); the other comprising an Automated Control Mode (AM) activated in the midst of the scenario. During the automation mode, the drivers were asked to watch a movie on a tablet inside the vehicle. When the drivers had to take control of the vehicle, two car-following maneuvers were planned, by simulating a slow-moving vehicle in the right lane in the meanwhile a platoon of vehicles in the overtaking lane discouraged the passing maneuver. Various driving performances (speeds, accelerations, etc.) and surrogate safety measures (PET and TTC) were collected and analysed, focusing on car-following maneuvers. The overall results indicated a more dangerous behavior of drivers who were previously subjected to driving automation; the percentage of drivers who did not apply the brakes and headed into the overtaking lane despite the presence of a platoon of fast-moving vehicles with unsafe gaps between them was higher in AM drive than in FM drive. Conversely, for drivers who preferred to brake, it was noted that those who had already experienced automated driving, adopted a more careful behavior during the braking maneuver to avoid a collision. Finally, with regard to drivers who had decided to overtake the braking vehicle, it should be noted that drivers who had already experienced automated driving did not change their behavior whilst overtaking the stopped lead vehicle.  相似文献   
49.
    
Mobile phone use while riding is one of the five most common risky behaviors of motorcycle riders in Vietnam. This study investigated motorcyclist’s mobile phone use while riding intention and behavior based on the extended Theory of Planned Behavior (TPB) framework. Based on this framework, attitude, subjective norm, perceived behavioral control, habits, and health motivation underlying the rider’s mobile phone use while riding intentions and behavior were included in a questionnaire and captured by direct and indirect measurements. Small-displacement motorcycle riders (N = 291) completed the extended TPB based questionnaire. An exploratory factor analysis technique identified the selected factors (e.g., attitude, habit, etc.). Moreover, Structural Equation Modeling results showed moderate to good fits to the observed data. Therefore, the results supported the utilization of extended TPB framework in identifying factors of mobile phone use while riding intention and behavior. Specifically, negative attitude, perceived behavioral control, and mobile phone use while riding habit related to the intention to use a mobile phone while riding of small-displacement motorcyclists. Meanwhile, habit and behavioral intention related to the behavior to use a mobile phone while riding of small-displacement motorcycle riders. Especially, the correlation between behavioral intention and self-reported behavior was very strong. This finding embraced previous research indicating that intention was a major motivational component of behavior. Based on the results, safety intervention implications for small-displacement motorcycle riders were discussed.  相似文献   
50.
    
Vehicle fleet rear-end collisions (FRECs) are an extremely fatal type of traffic collisions on freeway and they usually occur in foggy weather. This study aimed to explore the patterns of vehicle fleet rear-end collisions occurrence under different foggy conditions and speed limits on freeway. A multi-user driving simulator system was used to conduct the experiment and the driving behavior data were collected from eight participants. The experimental results showed that as the fog density increased, the length of vehicle fleet decreased significantly, and drivers tended to keep a more stable car-following distance. The fog weather and short vehicle gap prompted drivers to react faster and brake harder in respond to the leading vehicle’s brake. In spite of the compensational behaviors, more FRECs were observed under heavy fog condition. Lowering speed limit can significantly reduce the FRECs under foggy conditions. As the speed limits reduced, drivers’ brake response time and speed variance significantly reduced. The study also found that drivers’ brake response time was negatively correlated with their positions in the fleet. Drivers in the front positions of the fleet had a longer response time than drivers in the back positions and thus were more likely to encounter collisions. The study generated a better understanding of drivers’ behavioral pattern in a vehicle fleet and the patterns of vehicle fleet rear-end collisions occurrence. The findings also shed lights on the design of driver assistance system for complex driving situations such as freeway driving under adverse weather.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号