首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   127篇
  国内免费   202篇
  2024年   2篇
  2023年   36篇
  2022年   30篇
  2021年   57篇
  2020年   80篇
  2019年   80篇
  2018年   61篇
  2017年   68篇
  2016年   63篇
  2015年   47篇
  2014年   86篇
  2013年   192篇
  2012年   36篇
  2011年   38篇
  2010年   29篇
  2009年   48篇
  2008年   42篇
  2007年   62篇
  2006年   40篇
  2005年   42篇
  2004年   41篇
  2003年   38篇
  2002年   34篇
  2001年   12篇
  2000年   17篇
  1999年   12篇
  1998年   18篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1985年   12篇
  1984年   18篇
  1983年   13篇
  1982年   6篇
  1981年   4篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1425条查询结果,搜索用时 15 毫秒
111.
In the present study, the efficacy of visual demonstrations and verbal instructions as instructional constraints on the acquisition of movement coordination was investigated. Fifteen participants performed an aiming task on 100 acquisition and 20 retention trials, under 1 of 3 conditions: a modeling group (MG), a verbally directed group (VDG), and a control group (CG). The MG observed a model intermittently throughout acquisition, whereas the VDG was verbally instructed to use the model's movement pattern. Participants in the CG received neither form of instruction. Kinematic analysis revealed that compared with verbal instructions or no instructions, visual demonstrations significantly improved participants' approximation of the model's coordination pattern. No differences were found in movement outcomes. Coordination data supported the visual perception perspective on observational learning, whereas outcome data suggested that the modeling effect is mainly a function of task constraints, that is, the novelty of a movement pattern.  相似文献   
112.
The effects of movement time and time to visual feedback (feedback time) on prism exposure aftereffects and direct effects were studied. In Experiment 1, the participants' (N = 60) pointing limb became visible early in the movement (.2-s feedback time, and eye-head aftereffects increased with increasing movement time (.5 to 3.0 s), but larger hand-head aftereffects showed little change. Direct effects (terminal error during exposure) showed near-perfect compensation for the prismatic displacement (11.4 diopters) when movement time was short but decreasing compensation with longer movement times. In Experiment 2, participants' (N = 48) eye-head aftereffects increased and their larger hand-head aftereffects decreased with increasing movement time (2.0 and 3.0 s), especially when feedback time increased (.25 and 1.5 s). Direct effects showed increasing overcompensation for longer movement and feedback times. Those results suggest that aftereffects and direct effects measure distinct adaptive processes, namely, spatial realignment and strategic control, respectively. Differences in movement and feedback times evoke different eye -hand coordination strategies and consequent direct effects. Realignment aftereffects also depend upon the coordination strategy deployed, but not all strategies support realignment. Moreover, realignment is transparent to strategic control and, when added to strategic correction, may produce nonadaptive performance.  相似文献   
113.
The authors examined the hypothesis that the phasic and the static cross-talk effects found in bimanual movements with different target amplitudes originate at different functional levels of motor control, which implies that the effects can be dissociated experimentally. When the difference between the short and the long amplitudes assigned to the 2 hands of 12 participants was decreased, the static effect disappeared. In contrast, the phasic effect, which can be observed only at short preparation intervals, did not disappear; although it became smaller in absolute terms, in relative terms it did not. In addition, the authors compared the time course of amplitude assimilation with the time course of amplitude variability and examined the correlation between left hand and right hand amplitudes. The disappearance of the phasic amplitude assimilation at increasing preparation intervals turned out to be delayed relative to the decline of the correlation between amplitudes. That finding suggests that the assimilation of mean amplitudes and the correlation between left hand and right hand amplitudes are not fully equivalent indicators of intermanual interactions, but may indicate different kinds of inter-limb coupling.  相似文献   
114.
The authors addressed the hypothesis that economy in motor coordination is a learning phenomenon realized by both reduced energy cost for a given workload and more external work at the same prepractice metabolic and attentional energy expenditure. "Self-optimization" of movement parameters has been proposed to reflect learned motor adaptations that minimize energy costs. Twelve men aged 22.3 ± 3.9 years practiced a 90° relative phase, upper limb, independent ergometer cycling task at 60 rpm, followed by a transfer test of unpracticed (45 and 75 rpm) and selfpaced cadences. Performance in all conditions was initially unstable, inaccurate, and relatively high in both metabolic and attentional energy costs. With practice, coordinative stability increased, more work was performed for the same metabolic and attentional costs, and the same work was done at a reduced energy cost. Selfpaced cycling was initially below the metabolically optimal, but following practice at 60 rpm was closer to optimal cadence. Given the many behavioral options of the motor system in meeting a variety of everyday movement task goals, optimal metabolic and attentional energy criteria may provide a solution to the problem of selecting the most adaptive coordination and control parameters.  相似文献   
115.
The authors investigated the relation between hand kinematics and eye movements in 2 variants of a rhythmical Fitts's task in which eye movements were necessary or not necessary. P. M. Fitts's (1954) law held in both conditions with similar slope and marginal differences in hand-kinematic patterns and movement continuity. Movement continuity and eye—hand synchronization were more directly related to movement time than to task index of difficulty. When movement time was decreased to fewer than 350 ms, eye—hand synchronization switched from continuous monitoring to intermittent control. The 1:1 frequency ratio with stable π/6 relative phase changed for 1:3 and 1:5 frequency ratios with less stable phase relations. The authors conclude that eye and hand movements in a rhythmical Fitts's task are dynamically synchronized to produce the best behavioral performance.  相似文献   
116.
Despite the recent advances in the field of coordination dynamics addressing the interplay of constraints of different natures in the emergence of human coordination, F. Mechsner (2004) invites us to revive hierarchical and dichotomous thinking by offering again his exclusive position that coordinated movements are (purely) perceptual-cognitive/psychological in nature. In this comment, the authors address a number of theoretical and methodological issues that might potentially puzzle the readers of Mechsner's article. They contend that the dichotomy proposed by Mechsner (i.e., perceptual-cognitive vs. motor) constitutes a restrictive framework for understanding human coordination.  相似文献   
117.
Rotations are fundamental to motor control, not only for orienting to stimuli but also in the joint articulations that underlie translational movements. Studying three-dimensional (3-D) rotations of the simplest joint system, the eye, has provided general insights into the neural control of movement. First, in selecting one 3-D eye orientation for each two-dimensional (2-D) gaze direction, the oculomotor system generates a behavior called Listing's law that constrains eye position to a 2-D plane, Listing's plane. This selection is made internally by an inverse kinematic transformation called the Listing's law operator. Second, the oculomotor system incorporates the inherent multiplicative relationship between rotational velocity and position to generate the 3-D movement and position commands required by Listing's law. Finally, the coordinate systems for these commands appear to align with Listing's plane rather than with anatomic structures. Recent investigations have revealed similar behavioral constraints in the orientations of the head and arm, suggesting that the neural mechanisms for Listing's law may have analogues in many motor systems.  相似文献   
118.
The shifts in relative phase that are observed when rhythmically coordinated limbs are submitted to asymmetric mass perturbations have typically been attributed to the induced eigenfrequency difference ($DL$oM) between the limbs. Modeling the moving limbs as forced linear oscillators, however, reveals that asymmetric mass perturbations may induce a difference not only in eigenfrequency (i.e., $DL$oM $$ 0) but also in the covarying low-frequency control gains (i.e., $DLk $$ 0). Because the inverse of the lowfrequency control gain (k) reflects the level of muscular torque (input) required for a particular displacement from equilibrium (output), asymmetric mass perturbations may result in an imbalance in the muscular torques required for task performance (related to $DLk $$ 0). Thus, it is possible that the effects attributed to $DL$oM were in fact mediated by $DLk. In 2 experiments, the authors manipulated $DLk and $DL$oM separately by applying mass perturbations to the lower legs of 9 participants. The relative phasing between the legs was not affected by $DLk, but manipulation of $DL$oM (while $DLk remained approximately 0) induced systematic relative phase shifts that were more pronounced for antiphase than for in-phase coordination. That indication that the coordination dynamics is indeed influenced by an imbalance in eigenfrequency is discussed vis-à-vis the question of how such a merely peripheral property may affect the underlying coordination process.  相似文献   
119.
Marteniuk (1973) used negative results, which may be attributed to a lack of power, to question the adequacy of variable error as a measure of forgetting. He also used these negative results, along with constant error results which were consistent with the Laabs (1971, 1973) model of motor memory, to reject parts of the model related to variable error. Caution is advised when interpreting negative results and interchanging dependent measures.  相似文献   
120.
As a pre-requisite to curriculum development, the characteristics of the gross motor performance of special education classes of minimally brain injured boys and girls were described. In general, age changes in mean performance were linear, the scores of the boys being the superior. The level of performance very closely resembled that of comparison groups of educable mentally retarded children from the same school districts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号