首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   15篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   11篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   30篇
  2015年   9篇
  2014年   19篇
  2013年   42篇
  2012年   5篇
  2011年   5篇
  2010年   9篇
  2009年   45篇
  2008年   71篇
  2007年   71篇
  2006年   57篇
  2005年   71篇
  2004年   55篇
  2003年   57篇
  2002年   58篇
  2001年   40篇
  2000年   58篇
  1999年   38篇
  1998年   32篇
  1997年   33篇
  1996年   21篇
  1995年   20篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
排序方式: 共有911条查询结果,搜索用时 15 毫秒
681.
682.
This paper presents a new modal logic for ceteris paribus preferences understood in the sense of “all other things being equal”. This reading goes back to the seminal work of Von Wright in the early 1960’s and has returned in computer science in the 1990’s and in more abstract “dependency logics” today. We show how it differs from ceteris paribus as “all other things being normal”, which is used in contexts with preference defeaters. We provide a semantic analysis and several completeness theorems. We show how our system links up with Von Wright’s work, and how it applies to game-theoretic solution concepts, to agenda setting in investigation, and to preference change. We finally consider its relation with infinitary modal logics.  相似文献   
683.
We give an account of some relationships between the principles of Constant and Atom Exchangeability and various generalizations of the Principle of Instantial Relevance within the framework of Inductive Logic. In particular we demonstrate some surprising and somewhat counterintuitive dependencies of these relationships on ostensibly unimportant parameters, such as the number of predicates in the overlying language. Supported by a UK Engineering and Physical Sciences Research Council (EPSRC) Research Studentship.  相似文献   
684.
According to Hans Kamp and Frank Vlach, the two-dimensional tense operators “now” and “then” are ineliminable in quantified tense logic. This is often adduced as an argument against tense logic, and in favor of an extensional account that makes use of explicit quantification over times. The aim of this paper is to defend tense logic against this attack. It shows that “now” and “then” are eliminable in quantified tense logic, provided we endow it with enough quantificational structure. The operators might not be redundant in some other systems of tense logic, but this merely indicates a lack of quantificational resources and does not show any deep-seated inability of tense logic to express claims about time. The paper closes with a brief discussion of the modal analogue of this issue, which concerns the role of the actuality operator in quantified modal logic.  相似文献   
685.
Restricted Arrow     
In this paper I present a range of substructural logics for a conditional connective ↦. This connective was original introduced semantically via restriction on the ternary accessibility relation R for a relevant conditional. I give sound and complete proof systems for a number of variations of this semantic definition. The completeness result in this paper proceeds by step-by-step improvements of models, rather than by the one-step canonical model method. This gradual technique allows for the additional control, lacking in the canonical model method, that is required.  相似文献   
686.
We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new algebraic perspective to logics which are algebraizable using the standard tools of AAL. Furthermore, we pave the way toward a robust behavioral theory of AAL, namely by providing a behavioral version of the Leibniz operator which allows us to generalize the traditional Leibniz hierarchy, as well as several well-known characterization results. A number of meaningful examples will be used to illustrate the novelties and advantages of the approach. Presented by Daniele Mundici  相似文献   
687.
688.
From IF to BI     
We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Väänänen, and their compositional semantics due to Hodges. We show how Hodges’ semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O’Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural rôle, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural rôle.  相似文献   
689.
Deductive inference is usually regarded as being “tautological” or “analytical”: the information conveyed by the conclusion is contained in the information conveyed by the premises. This idea, however, clashes with the undecidability of first-order logic and with the (likely) intractability of Boolean logic. In this article, we address the problem both from the semantic and the proof-theoretical point of view. We propose a hierarchy of propositional logics that are all tractable (i.e. decidable in polynomial time), although by means of growing computational resources, and converge towards classical propositional logic. The underlying claim is that this hierarchy can be used to represent increasing levels of “depth” or “informativeness” of Boolean reasoning. Special attention is paid to the most basic logic in this hierarchy, the pure “intelim logic”, which satisfies all the requirements of a natural deduction system (allowing both introduction and elimination rules for each logical operator) while admitting of a feasible (quadratic) decision procedure. We argue that this logic is “analytic” in a particularly strict sense, in that it rules out any use of “virtual information”, which is chiefly responsible for the combinatorial explosion of standard classical systems. As a result, analyticity and tractability are reconciled and growing degrees of computational complexity are associated with the depth at which the use of virtual information is allowed.  相似文献   
690.
We model the forgetting of propositional variables in a modal logical context where agents become ignorant and are aware of each others’ or their own resulting ignorance. The resulting logic is sound and complete. It can be compared to variable-forgetting as abstraction from information, wherein agents become unaware of certain variables: by employing elementary results for bisimulation, it follows that beliefs not involving the forgotten atom(s) remain true. The work for this publication was mainly carried out while Hans van Ditmarsch was associated to: Institut de Recherche en Informatique, Université Paul Sabatier, France.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号