首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   11篇
  2013年   46篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
21.
In this study, bulk nanostructured composite Cu60Fe40 alloy is prepared by a combustion synthesis technique. The prepared Cu60Fe40 alloy consists of Cu(Fe) solid solution and Fe(Cu) solid solution phases. The large-scaled compositional segregation in the Cu-rich and Fe-rich phases is not observed, respectively. A few micron-sized dendrite (Fe(Cu) solid solution) is embedded into the nanostructured matrix (Cu(Fe) solid solution). The grain size of the matrix is in the range 50–300?nm. The yield and fracture strength of the Cu60Fe40 alloy are 540 and 1050?MPa, respectively, and the fracture strain obtained from the compression test is about 20.9%. The Cu60Fe40 alloy displays notable work hardening in the compressive deformation.  相似文献   
22.

Sintering of two cylindrical particles of different sizes by surface diffusion at the early stage is theoretically analysed. Formulae for the neck growth rate are derived using a variational principle and the continuity equation of vacancies. The size difference between two particles is found to influence the growth rate of the neck only when the difference is large.  相似文献   
23.
A novel, instrumented microindentation technique was successfully used to measure the temperature associated with the martensitic transformation leading to the recovery of plastic strain in a Nickel–Titanium (NiTi) shape memory alloy. Following a standard indentation cycle, the indenter was partially unloaded such that a good contact was maintained between indenter and specimen surface. The onset and finish temperature of the martensitic transformation, the associated volume contraction, and the amount of the recovered plastic deformation were determined by quantifying the indenter displacement as a function of temperature. These experiments were compared to conventional measurements of the transformation temperature by differential scanning calorimetry and compression testing.  相似文献   
24.

Single crystals of the quasicrystal approximant phase xi'1-(Al-Pd-Mn) were deformed at a high temperature in three-point bending geometry. Two different mechanisms of plastic deformation were observed in this phase: one based on the motion of phason lines and the other based on dislocations. Line directions and Burgers vector directions of the dislocations were determined. The relative importances of the two mechanisms are discussed as a function of the sample orientation with respect to the bending geometry.  相似文献   
25.
This paper presents a study of the deformation behaviour of a glassy phase in two Zr-based alloys, Zr65Ni10Cu5Al7.5Pd12.5 and Zr65Al7.5Ni10Pd17.5, performed in situ in a transmission electron microscope. In contrast to the case of shear localisation and formation of 10–20 nm thick shear bands in deformed bulk glassy samples studied earlier, it is found that in thin (electron-transparent) samples the glassy phase in front of a crack deforms more homogeneously and no nanocrystallisation takes place. The reasons for such behaviour are discussed. According to the observed results, one can conclude that the studied metallic glasses can be intrinsically ductile in submicrometre-sized volumes.  相似文献   
26.
The recrystallization behaviour of a cold-rolled, low-density, low-alloy duplex-phase alloy (Fe–6.57Al–3.34Mn–0.18C, wt.%) has been studied. Temperature-resolved X-ray diffraction and dilatometry showed that the alloy recrystallizes at 850?°C during continuous heating. However, electron back-scattered diffraction investigations using Kernel average misorientation revealed that during annealing ferrite recrystallizes at lower temperatures while austenite remains strained up to 1200?°C. This study underlines the complexity of recrystallization of a microstructure comprising of constituents with high and low stacking fault energy.  相似文献   
27.
On account of its good biocompatibility, superelastic Ni–Ti arc wire alloys have been successfully used in orthodontic clinics. Nevertheless, delayed fracture in the oral cavity caused by hydrogen diffusion can be observed. The in situ stress relaxation susceptibility of a Ni–Ti shape memory alloy towards hydrogen embrittlement has been examined with respect to the current densities and imposed deformations. Orthodontic wires have been relaxed at different martensite volume fractions using current densities of 5, 10 and 20 A/m2 at 20 °C. The in situ relaxation stress shows that, for an imposed strain at the middle of the austenite–martensite transformation, the specimen fractures at the martensite–austenite reverse transformation. However, for an imposed strain at the beginning of the austenite–martensite plateau, the stress decreases in a similar way to the full austenite structure. Moreover, the stress plateau has been recorded at the reverse transformation for a short period. For the fully martensite structure, embrittlement occurs at a higher stress value. This behaviour is attributed to the interaction between the in situ austenite phase expansion and the diffusion of hydrogen in the different volume fractions of the martensite phase, produced at an imposed strain.  相似文献   
28.
29.
7055 Al alloys samples were prepared by spray forming and hot-extrusion followed by two different aging treatment procedures. Their different distributions of GP zones, and nanoscale precipitates η′ (MgZn) and η (MgZn2) are extensively investigated by transmission electron microscope (TEM). The mechanical properties, including tensile strength, Vickers hardness and elongation of both aged 7055 Al alloys, have also been measured and analysed. It is found that T6 and T76 aging treatment results in quite different microstructure and mechanical properties. The outstanding performance of the 7055 Al alloys after T6 aging treatment is attributed to nanoscale semi-coherent dispersion precipitates.  相似文献   
30.
As-extruded Mg–Al alloy was multi-directionally forged (MDFed) at room temperature to cumulative strain of ΣΔ??=?2.0 at maximum by employing a pass strain of Δ??=?0.1. The coarse initial grains were subdivided gradually to ultra-fine ones by mechanical twinning. The MDFed Mg alloy showed superior mechanical properties of 530?MPa yield and 650?MPa ultimate tensile strengths with ductility of 9%. The relatively large ductility was induced by grain orientation randomization due to multiple twinning and the small pass strains which suppressed the sharp basal-texture evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号