首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  2019年   1篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   11篇
  2013年   46篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
11.
We describe a novel approach to synthesize gradient microstructures, defined hereafter as containing a broad but continuous distribution of grain sizes. These microstructures extend the concept of a bimodal grain size distribution and the ability to design with multiple length scales. We demonstrate the proposed approach via experiments involving cryogenic ball milling of Al–4.5Mg–0.4Mn–0.05Fe and Al–50Mg powder followed by subsequent consolidation. Our results reveal that the grains in the consolidated powder present a gradient size distribution ranging from <100 nm to >3 μm. Moreover, phase composition analysis revealed a unique “interfingered” structure where the two starting phases were intermixed in a complex three-dimensional mesh. Hardness studies of this gradient microstructure show average Vickers hardness values of 200 ± 2.6, 204 ± 4.3 and 266 ± 50 for macrohardness, microhardness and nanoindentation, respectively. The standard deviation values highlight that the gradient microstructure is disordered locally, but homogenous macroscopically.  相似文献   
12.
In this study, cold rolling was performed on a binary Al–20 wt%Zn alloy and dynamic precipitation identified for the first time in Al alloys under cold rolling. Zn clusters formed after application of 0.6 strain, and the Zn phase precipitated upon further increasing strain. Both grain refinement and rolling-induced defects are considered to promote Zn precipitation. The hardness of Al–Zn alloy initially increased with strain up to a strain of 2.9 and then decreased with increasing rolling strain. Dynamic precipitation greatly affects the strengthening mechanism of the rolled Al–Zn alloy under various strains.  相似文献   
13.
14.
We report an abnormally high residual dislocation density in aluminium in an Al/Ti/Al laminate annealed at 873 K for seven days. The residual dislocation density reaches 7.5 × 1014 m?2, higher than that in aluminum after severe plastic deformation processes such as accumulative roll bonding and high-pressure torsion. It is proposed that the high residual dislocation density may result from obstruction of the movement of TiAl3 nanoparticles by the grain boundary and Ti atoms conglomerating at vacancies distributed in the aluminium matrix at a high temperature for a sufficient time to allow a relatively stable crystal.  相似文献   
15.
A numerical calculation method based on the angle in a triple junction composed of a random grain boundary is proposed to predict the connectivity and stability of a grain boundary in a B10 copper-nickel alloy. The grain-boundary connectivity and its effect on corrosion resistance are studied combining computer-aided analysis with electrochemical impedance testing. The results show that the prediction of corrosion resistance using a grain-boundary connectivity numerical method is consistent with immersion experimental results. The B10 alloy exhibited the best corrosion resistance after cold rolling with a 9% reduction rate. The relationship between the grain-boundary characteristics and corrosion resistance is well established using the numerical method to quantify the grain-boundary connectivity. A higher connective frequency and a low proportion of grain-boundary angles between 60° and 180° in the triple junction is detrimental to corrosion resistance of the B10 alloy.  相似文献   
16.
Mg–Sn-based alloys are considered as a promising precipitation-hardening system for applications at elevated temperatures, but the hardening effect is not satisfactory owing to sluggish nucleation and rapid coarsening of the major Mg2Sn lath precipitates. In this study, Cu and Al are added to a Mg–6Sn–1Mn base alloy. The age-hardening response and the microstructures of these modified alloys have been investigated and are compared to that of the base alloy. The additional elements are found to bring several beneficial effects to the alloys for applications at elevated temperatures. Firstly, a eutectic structure consisting of strong intermetallic phases, i.e. Mg2Cu in the Mg–6Sn–1Mn–2Cu alloy and Al0.93Cu1.07Mg in the Mg–6Sn–1Mn–2Cu–2Al alloy, remains stable along the grain boundaries after solution and ageing heat treatments. Secondly, the precipitate density has been increased significantly and the precipitate size has been refined remarkably during ageing at 200?°C. Moreover, the growth of the precipitates is inhibited remarkably during the over-ageing period. Therefore, the age-hardening response and over-ageing resistance are notably improved.  相似文献   
17.
The evolution of deformation texture in a Ni–60Co alloy with low stacking fault energy and a grain size in the nanometre range has been investigated. The analyses of texture and microstructure suggest different mechanisms of deformation in nanocrystalline as compared to microcrystalline Ni–60Co alloy. In nanocrystalline material, the mechanism responsible for texture formation has been identified as partial slip, whereas in microcrystalline material, a characteristic texture forms due to twinning and shear banding.  相似文献   
18.
Microstructural features and mechanical properties of an Al–Mg–Si alloy processed by high-pressure torsion (HPT) have been investigated using transmission electron microscopy, X-ray diffraction, three-dimensional atom probe, tensile tests and micro-hardness measurements. It is shown that HPT processing of the Al–Mg–Si alloy leads to a much stronger grain size refinement than of pure aluminium (down to 100 nm). Moreover, massive segregation of alloying elements along grain boundaries is observed. This nanostructure exhibits a yield stress even two times higher than that after a standard T6 heat treatment of the coarse-grained alloy.  相似文献   
19.
The fracture mechanism during fracture toughness testing has been investigated on a coarse-grained magnesium alloy, with an average grain size of ~50 µm, and a low fracture toughness. The results show that {1012}-type deformation twins are formed at the crack tip and many dislocations pile up on these boundaries. The accumulated strains at these boundaries become the origin of fracture; i.e. cracks propagate along these boundaries between the deformation twins and the matrix.  相似文献   
20.
In this article, we propose an efficient atomic packing cluster-based composition protocol to help design Al-based metallic glasses. Its validity is verified by some typical experimental data from the literatures. Furthermore, with this understanding, the Al–Ni–Y alloy system is re-evaluated. As a result, the best glass former Al86Ni9Y5 in this system, with the critical thickness of about 500 µm, is successfully fabricated by wedge casting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号