首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1981年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
Previous research has revealed that a stimulus presented in the blind visual field of participants with visual hemifield defects can evoke oculomotor competition, in the absence of awareness. Here we studied three cases to determine whether a distractor in a blind hemifield would be capable of inducing a global effect, a shift of saccade endpoint when target and distractor are close to each other, in participants with lesions of the optic radiations or striate cortex. We found that blind field distractors significantly shifted saccadic endpoints in two of three participants with lesions of either the striate cortex or distal optic radiations. The direction of the effect was paradoxical, however, in that saccadic endpoints shifted away from blind field distractors, whereas endpoints shifted towards distractors in the visible hemifields, which is the normal global effect. These results provide further evidence that elements presented in the blind visual field can generate modulatory interactions in the oculomotor system, which may differ from interactions in normal vision.  相似文献   
12.
The nature of obsessions has led researchers to try to determine if the main problem in obsessive-compulsive disorder (OCD) is impaired inhibitory control. Previous studies report that the effort to suppress is one of the factors that increase the frequency of obsessive thoughts. Based on these results and those of the present study that suggest inferior parietal lobe (IPL) abnormality in OCD and findings of a recent study that reported the importance of the right posterior parietal cortex in cognitive control of a simple mental image, the present cognitive control paradigm study aimed to determine whether there is a difference in brain dynamics between OCD patients and non-obsessive controls while performing tasks that necessitate cognitive control of a simple mental image, and whether the right posterior parietal region is one of the regions in which a difference in activity between the OCD patients and controls would be observed. Functional brain imaging was performed while the participants attempted to suppress, imagine, or manipulate a mental image. The general linear model showed that there was a main effect of group and main effect of task. Accordingly, in all contrasts (suppression minus free-imagination, erasing minus free-imagination, and imagination minus free-imagination), the right IPL, right posterior cingulate cortex, and right superior frontal gyrus activity were lower in the OCD patients than in the healthy controls. These results and the observed correlations between activity levels, and symptom and subjective performance scores are discussed. In conclusion, the results of the present study and those of previous studies suggest that the main problem in OCD might be difficulty activating the right frontoparietal networks during tasks that require cognitive control, which might result in the intrusiveness of obsessive thoughts.  相似文献   
13.
To understand the development of sensory processes, it is necessary not only to look at the maturation of each of the sensory systems in isolation, but also to study the development of the nervous systems capacity to integrate information across the different senses. It is through such multisensory integration that a coherent perceptual gestalt of the world comes to be generated. In the adult brain, multisensory convergence and integration take place at a number of brainstem and cortical sites, where individual neurons have been found that respond to multisensory stimuli with patterns of activation that depend on the nature of the stimulus complex and the intrinsic properties of the neuron. Parallels between the responses of these neurons and multisensory behavior and perception suggest that they are the substrates that underlie these cognitive processes. In both cat and monkey models, the development of these multisensory neurons and the appearance of their integrative capacity is a gradual postnatal process. For subcortical structures (i.e., the superior colliculus) this maturational process appears to be gated by the appearance of functional projections from regions of association cortex. The slow postnatal maturation of multisensory processes, coupled with its dependency on functional corticotectal connections, suggested that the development of multisensory integration may be tied to sensory experiences acquired during postnatal life. In support of this, eliminating experience in one sensory modality (i.e., vision) during postnatal development severely compromises the integration of multisensory cues. Research is ongoing to better elucidate the critical development antecedents for the emergence of normal multisensory capacity.Edited by Marie-Hélène Giard and Mark WallaceThis revised version was published in May 2004 with corrections to Fig. 1.  相似文献   
14.
Biological motion perception is a key component of action perception contributing to social cognition in crucial ways. Contemporary neuroimaging studies show that biological motion is processed differently in the human brain from other types of motion. In particular, the right posterior Superior Temporal Sulcus (rpSTS), an area known for its central role in social perception, has been consistently associated with the perception of biological motion in the mature brain. By contrast, most findings investigating the development of biological motion perception in infancy come from behavioral studies, and far less is known regarding the right STS’ role in processing biological motion.The current study used fNIRS to measure brain activation to biological motion in the rSTS region of 7–8-month-old infants. Infants were presented with two conditions: an approaching coherent motion of a person walking (coherent point-light-walker, PLW); and a spatially scrambled version of this display, where the global configuration of a person walking was disrupted (scrambled PLW).We found a functional activation, i.e., a significant increase in HbO2 concentration in relation to baseline, in the right middle-posterior temporal cortex only when infants viewed the coherent point-light-walker. This activation statistically differed from the scrambled point-light-walker, and no significant activations were found for viewing the scrambled motion.Our study adds evidence pointing to rSTS’ sensitivity to the global human configuration in biological motion processing during infancy. The rSTS seems thus to become functionally specialized in biological motion configuration as early as at 7–8 months of age.  相似文献   
15.
The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in behavioral, neurophysiological and computational studies. The mechanisms underlying deviation away, on the other hand, remain unclear. Behavioral findings suggest a mechanism of spatially focused, top-down inhibition in a saccade map, and deviation away has become a tool to investigate such inhibition. However, this inhibition hypothesis has little neuroanatomical or neurophysiological support, and recent findings go against it. Here, we propose that deviation away results from an unbalanced saccade drive from the brainstem, caused by spike rate adaptation in brainstem long-lead burst neurons. Adaptation to stimulation in the direction of the distractor results in an unbalanced drive away from it. An existing model of the saccade system was extended with this theory. The resulting model simulates a wide range of findings on saccade trajectories, including findings that have classically been interpreted to support inhibition views. Furthermore, the model replicated the effect of saccade latency on deviation away, but predicted this effect would be absent with large (400 ms) distractor-target onset asynchrony. This prediction was confirmed in an experiment, which demonstrates that the theory both explains classical findings on saccade trajectories and predicts new findings.  相似文献   
16.
Numerous studies implicate superior temporal sulcus (STS) in the perception of human movement. More recent theories hold that STS is also involved in the understanding of human movement. However, almost no studies to date have associated STS function with observable variability in action understanding. The present study directly associated STS activity with performance on a challenging task requiring the interpretation of human movement. During functional MRI scanning, fourteen adults were asked to identify the direction (left or right) in which either a point-light walking figure or spinning wheel were moving. The task was made challenging by perturbing the dot trajectories to a level (determined via pretesting) where each participant achieved 72% accuracy. The walking figure condition was associated with increased activity in a constellation of social information processing and biological motion areas, including STS, MT+/V5, right pars opercularis (inferior frontal gyrus), fusiform gyrus, and amygdala. Correctly answered walking figure trials were uniquely associated with increased activity in two right hemisphere STS clusters and right amygdala. Present findings provide some of the strongest evidence to date that STS plays a critical role in the successful interpretation of human movement.  相似文献   
17.
Modulation of brain activity during phonological familiarization   总被引:5,自引:0,他引:5  
We measured brain activity in 12 adults for the repetition of auditorily presented words and nonwords, before and after repeated exposure to their phonological form. The nonword phoneme combinations were either of high (HF) or low (LF) phonotactic frequency. After familiarization, we observed, for both word and nonword conditions, decreased activation in the left posterior superior temporal gyrus, in the bilateral temporal pole and middle temporal gyri. At the same time, interaction analysis showed that the magnitude of decrease of activity in bilateral posterior temporal lobe was significantly smaller for LF nonwords, relative to words and HF nonwords. Decrease of activity in this area also correlated with the size of behavioral familiarization effects for LF nonwords. The results show that the posterior superior temporal gyrus plays a fundamental role during phonological learning. Its relationship to sublexical and lexical phonological processing as well as to phonological short-term memory is discussed.  相似文献   
18.
The second year of life is a time when social communication skills typically develop, but this growth may be slower in toddlers with language delay. In the current study, we examined how brain functional connectivity is related to social communication abilities in a sample of 12-24 month-old toddlers including those with typical development (TD) and those with language delays (LD). We used an a-priori, seed-based approach to identify regions forming a functional network with the left posterior superior temporal cortex (LpSTC), a region associated with language and social communication in older children and adults. Social communication and language abilities were assessed using the Communication and Symbolic Behavior Scales (CSBS) and Mullen Scales of Early Learning. We found a significant association between concurrent CSBS scores and functional connectivity between the LpSTC and the right posterior superior temporal cortex (RpSTC), with greater connectivity between these regions associated with better social communication abilities. However, functional connectivity was not related to rate of change or language outcomes at 36 months of age. These data suggest an early marker of low communication abilities may be decreased connectivity between the left and right pSTC. Future longitudinal studies should test whether this neurobiological feature is predictive of later social or communication impairments.  相似文献   
19.
基于说服模型,本研究探讨了建言类型、上下级关系、管理者感知忠诚对管理者建言采纳的影响。通过两个管理者样本的实验数据,本研究发现:(1)管理者更易采纳促进性建言而非抑制性建言;(2)在上下级关系不好的情况下,建言类型对建言采纳的影响显著,在上下级关系较好的情况下,建言类型对建言采纳的影响不显著;(3)上下级关系是通过管理者感知忠诚调节建言类型对建言采纳的影响。  相似文献   
20.
Crossed aphasia: analysis of four cases   总被引:4,自引:0,他引:4  
Data from the Rehabilitation Institute of Chicago was used to contrast a sample of 358 aphasics with data from a Boston aphasia and aging study (L. Obler, M. Albert, H. Goodglass, and F. Benson, Brain and Language, 6, 318–322, 1978). Unlike the females, Chicago males showed remarkable similarity to the Boston male sample for the Broca, Wernicke, and Global groups with ratios of approximately four Broca's to every two Wernicke's and Global aphasics. Similar to the Boston Sample, Wernicke's aphasics were 11.6 years older (p < .001) than Broca's aphasics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号