首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   20篇
  国内免费   7篇
  2023年   4篇
  2022年   3篇
  2021年   20篇
  2020年   12篇
  2019年   13篇
  2018年   14篇
  2017年   30篇
  2016年   32篇
  2015年   10篇
  2014年   26篇
  2013年   137篇
  2012年   14篇
  2011年   42篇
  2010年   18篇
  2009年   48篇
  2008年   60篇
  2007年   42篇
  2006年   27篇
  2005年   26篇
  2004年   22篇
  2003年   28篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
排序方式: 共有650条查询结果,搜索用时 31 毫秒
101.
Following an abrupt onset of a peripheral stimulus (a cue), the response to a visual target is faster when the target appears at the cued position than when it appears at other positions. However, if the stimulus onset asynchrony (SOA) is longer than approximately 300 ms, the response to the target is slower at the cued position than that at other positions. This phenomenon of a longer response time to cued targets is called "inhibition of return" (IOR). Previous hypotheses propose contributions of both response inhibition and attentional inhibition at cued position to IOR, and suggest that responding to the cue can eliminate the component of response inhibition. The current study uses tasks either executing or withholding response to the cue to investigate the relative contributions of response and attention components to IOR. A condition with bilateral display of the cue is also chosen as a control condition, and eight different SOAs between 1,000 and 2,750 ms are tested. Compared to the control condition, response delay to the target at a cued position is eliminated by responding to the cue, and a response advantage to the target at an uncued position is not affected by responding to the cue. Furthermore, both response delay at a cued position and response advantage at an uncued position decrease with SOA in the time window tested in these experiments. The results reported here indicate a dominant response inhibition at a cued position and a primary attentional allocation at an uncued position for IOR. Nonsignificant perceptual/attentional suppression at a cued position is argued to be a benefit for visual detection in a changing world.  相似文献   
102.
This paper provides a short overview of the scientific knowledge concerning short-distance navigation in cephalopods. Studies in laboratory controlled conditions and observations in the field provide converging evidence that cephalopods use visual cues to navigate and demonstrate spatial memory. A recent study also provides the first evidence for the neural substrates underlying spatial abilities in cuttlefish. The functions of spatial cognition in cephalopods are discussed from an evolutionary standpoint.  相似文献   
103.
A critical question in Cognitive Science concerns how knowledge of specific domains emerges during development. Here we examined how limitations of the visual system during the first days of life may shape subsequent development of face processing abilities. By manipulating the bands of spatial frequencies of face images, we investigated what is the nature of the visual information that newborn infants rely on to perform face recognition. Newborns were able to extract from a face the visual information lying from 0 to 1 cpd (Experiment 1), but only a narrower 0-0.5 cpd spatial frequency range was successful to accomplish face recognition (Experiment 2). These results provide the first empirical support of a low spatial frequency advantage in individual face recognition at birth and suggest that early in life low-level, non-specific perceptual constraints affect the development of the face processing system.  相似文献   
104.
Being able to reorient to the spatial environment after disorientation is a basic adaptive challenge. There is clear evidence that reorientation uses geometric information about the shape of the surrounding space. However, there has been controversy concerning whether use of geometry is a modular function, and whether use of features is dependent on human language. A key argument for the role of language comes from shadowing findings where adults engaged in a linguistic task during reorientation ignored a colored wall feature and only used geometric information to reorient [Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Sources of flexibility in human cognition: Dual task studies of space and language. Cognitive Psychology, 39, 3-36]. We report three studies showing: (a) that the results of Hermer-Vazques et al. [Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Sources of flexibility in human cognition: Dual task studies of space and language. Cognitive Psychology, 39, 3-36] are obtained in incidental learning but not with explicit instructions, (b) that a spatial task impedes use of features at least as much as a verbal shadowing task, and (c) that neither secondary task impedes use of features in a room larger than that used by Hermer-Vazquez et al. These results suggest that language is not necessary for successful use of features in reorientation. In fact, whether or not there is an encapsulated geometric module is currently unsettled. The current findings support an alternative to modularity; the adaptive combination view hypothesizes that geometric and featural information are utilized in varying degrees, dependent upon the certainty and variance with which the two kinds of information are encoded, along with their salience and perceived usefulness.  相似文献   
105.
Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to perform it. In this model, developed within the Adaptive Control of Thought-Rational (ACT-R) architecture, visualization capacity is limited by three mechanisms. Two of these (associative interference and decay) are longstanding characteristics of ACT-R’s declarative memory. A third (spatial interference) is a new mechanism motivated by spatial proximity effects in our data. We tested the model in two experiments, one with parameter-value fitting, and a replication without further fitting. Correspondence between model and data was close in both experiments, suggesting that the model may be useful for understanding why visualizing new, complex spatial material is so difficult.  相似文献   
106.
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.  相似文献   
107.
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006) , was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps.  相似文献   
108.
We investigated the development of code specific representations of different kinds of information in long term memory. Forty second graders, 40 sixth graders and 40 adults learned the associations between 12 pictures and one position each in a 4 × 3 grid of squares, 12 pictures and 1 of 12 monosyllabic words each or 12 pictures and 1 of 12 faces. After a 3 min distractor task, a picture was presented in the retrieval phase, and the associated position, word or face had to be selected. Performance in the verbal condition improved as a function of age, while performance in the spatial condition turned out to be independent of age, and the performance in the facial condition showed a difference between both child groups and the adults. The results revealed a developmental difference of code specific representation of different kinds of information.  相似文献   
109.
We investigated the time course of spatial-memory decay in rats using an eight-arm radial maze. It is well established that performance remains high with retention intervals as long as 4 h, but declines to chance with a 24-h retention interval (Beatty, W. W., & Shavalia, D. A. (1980b). Spatial memory in rats: time course of working memory and effect of anesthetics. Behavioral & Neural Biology, 28, 454-462). It is possible that 24 h reflects a genuine retention limitation of rat spatial memory. Alternatively, it may be possible to identify factors that might support memory performance even after very long delays. The current experiment was conducted to test the above two hypotheses. We evaluated performance using two intertrial intervals (24 and 48 h) and two retention intervals (1 and 25 h). Increasing the intertrial interval produced an approximately constant increase in performance for both retention intervals. This improvement is consistent with a trial-spacing effect (i.e., the superiority of spaced over massed trials). Rat spatial memory apparently lasts at least 25 h.  相似文献   
110.
Spatial learning has been examined in a variety of animals to determine what cues are used to navigate through a complex environment. A common feature of previously studied vertebrates and invertebrates is their need to return to a previously visited site for mating, nesting, foraging or predator avoidance. Velvet ants (Hymenoptera: Mutillidae) are cursorial parasitoids with flightless females that must walk through complex terrain to find ground dwelling host larvae burrows. Velvet ants are not central-place foragers (they do not return to an established nest site) so much of the previous work on spatial learning does not directly apply in this context. It was assumed that females primarily use chemosensory cues for navigation and burrow location instead of visual learning. This study, however, demonstrates that velvet ant females are able to use visual landmarks to find an inconspicuous exit in an aversion-motivation spatial learning task. A significant number of velvet ants learned to locate the exit after seven training trials and went to the previous location of the exit even after the maze had been rotated, showing that landmarks external to the maze were used to learn the escape location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号