首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   48篇
  国内免费   60篇
  2024年   3篇
  2023年   8篇
  2022年   7篇
  2021年   21篇
  2020年   24篇
  2019年   24篇
  2018年   26篇
  2017年   45篇
  2016年   47篇
  2015年   19篇
  2014年   41篇
  2013年   180篇
  2012年   26篇
  2011年   53篇
  2010年   26篇
  2009年   55篇
  2008年   85篇
  2007年   57篇
  2006年   38篇
  2005年   34篇
  2004年   35篇
  2003年   30篇
  2002年   19篇
  2001年   8篇
  2000年   7篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   3篇
  1987年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有951条查询结果,搜索用时 31 毫秒
181.
Clinical signs of damage to the egocentric reference system range from the inability to detect stimuli in the real environment to a defect in recovering items from an internal representation. Despite clinical dissociations, current interpretations consider all symptoms as due to a single perturbation, differentially expressed according to the medium explored (perceptual or representational). We propose an alternative account based on the functional distinction between two separate egocentric mechanisms: one allowing construction of the immediate point of view, the other extracting a required perspective within a mental representation. Support to this claim comes from recent results in the domain of navigation, showing that separate cognitive mechanisms maintain the egocentric reference when actively exploring the visual space as opposed to moving according to an internal map. These mechanisms likely follow separate developmental pathways, seemingly depend on distinct neural pathways and are used independently by healthy adults, reflecting task demands and individual cognitive style. Implications for spatial cognition and social skills are discussed.  相似文献   
182.
The definition of episodic memory includes the concept of mental time travel: the ability to re-experience a previously experienced trajectory through continuous dimensions of space and time, and to recall specific events or stimuli along this trajectory. Lesions of the hippocampus and entorhinal cortex impair human episodic memory function and impair rat performance in tasks that could be solved by retrieval of trajectories. Recent physiological data suggests a novel model for encoding and retrieval of trajectories, and for associating specific stimuli with specific positions along the trajectory. During encoding in the model, external input drives the activity of head direction cells. Entorhinal grid cells integrate the head direction input to update an internal representation of location, and drive hippocampal place cells. Trajectories are encoded by Hebbian modification of excitatory synaptic connections between hippocampal place cells and head direction cells driven by external action. Associations are also formed between hippocampal cells and sensory stimuli. During retrieval, a sensory input cue activates hippocampal cells that drive head direction activity via previously modified synapses. Persistent spiking of head direction cells maintains the direction and speed of the action, updating the activity of entorhinal grid cells that thereby further update place cell activity. Additional cells, termed arc length cells, provide coding of trajectory segments based on the one-dimensional arc length from the context of prior actions or states, overcoming ambiguity where the overlap of trajectory segments causes multiple head directions to be associated with one place. These mechanisms allow retrieval of complex, self-crossing trajectories as continuous curves through space and time.  相似文献   
183.
An animal’s memory may be limited in capacity, which may result in competition among available memory cues. If such competition exists, natural selection may favor prioritization of different memory cues based on cue reliability and on associated differences in the environment and life history. Food-caching birds store numerous food items and appear to rely on memory to retrieve caches. Previous studies suggested that caching species should always prioritize spatial cues over non-spatial cues when both are available, because non-spatial cues may be unreliable in a changing environment; however, it remains unclear whether non-spatial cues should always be ignored when spatial cues are available. We tested whether mountain chickadees (Poecile gambeli), a food-caching species, prioritize memory for spatial cues over color cues when relocating previously found food in an associative learning task. In training trials, birds were exposed to food in a feeder where both spatial location and color were associated. During subsequent unrewarded test trials, color was dissociated from spatial location. Chickadees showed a significant pattern of inspecting feeders associated with correct color first, prior to visiting correct spatial locations. Our findings argue against the hypothesis that the memory of spatial cues should always take priority over any non-spatial cues, including color cues, in food-caching species, because in our experiment mountain chickadees chose color over spatial cues. Our results thus suggest that caching species may be more flexible in cue use than previously thought, possibly dependent upon the environment and complexity of available cues.  相似文献   
184.
Since Cheng (Cognition 23:149–178, 1986) first proposed the “geometric module” in rats, a great deal of research has focused on how other species use geometric information and how geometric encoding may differ across species. Here, hand-reared and wild-caught black-capped chickadees and wild-caught mountain chickadees searched for food hidden in one corner in a rectangular environment. Previous research has shown that mountain chickadees do not spontaneously encode geometric information when a salient feature is present near the goal location. Using a slightly different training and testing procedure, we found that both hand-reared and wild-caught black-capped chickadees encoded geometric information, even in the presence of a salient landmark. Some, but not all, mountain chickadees also encoded geometric information. Overall, our results suggest that use of geometric information may be a less preferred strategy for mountain chickadees than for either wild-caught or hand-reared black-capped chickadees. To our knowledge, this is the first direct interspecies comparison of use of geometric information in a spatial orientation task.  相似文献   
185.
Previous studies in our laboratory have shown that when presented with a sudden stimulus simulating an oncoming predator, Mongolian gerbils can compute the optimal trajectory to a safe refuge, taking into account the position of the threat, the location of a clearly visible refuge, and several other contextual variables as well. In the present studies, the main goal was to explore the abilities of gerbils to use mental representations of spaces that were visually occluded by opaque barriers to compute efficient escape trajectories. In all studies, gerbils were placed into a round open field containing a single refuge. On each trial, an overhead visual stimulus was caused to ‘fly’ overhead, eliciting robust escape movements from the gerbils. By manipulating the shape and position of a series of opaque barriers that were interposed between the gerbils and the refuge, we were able to show that gerbils can compute the shortest route to an invisible target, even when the available routes to the target are made complex by using elaborate barrier shapes. These findings suggest that gerbils can maintain representations of their locations with respect to salient environmental landmarks and refuges, even when such locations are not continuously visible.  相似文献   
186.
决策过程中参照点效应研究述评   总被引:10,自引:0,他引:10  
Kahneman和Tversky提出的“参照点效应”概念,对决策者的认知编码和信息整合方式做出了合理的解释,并对传统的理性决策理论提出了挑战。近年来,关于参照点效应的研究也一直受到众多学者的重视。文章系统阐述了参照点效应的相关概念和最新研究进展,并提出了参照点效应未来研究的4个趋势:日益重视多重参照点效应的研究、开始关注动态决策中的参照点变化机制、重视群体决策过程中的参照点效应研究、注重在现实决策任务中验证和发展参照点效应的相关理论  相似文献   
187.
Insects, birds, and mammals have been shown capable of encoding spatial information in memory using multiple strategies or frames of reference simultaneously. These strategies include orientation to a goal-specific cue or beacon, to the position of the goal in an array of local landmarks, or to its position in the array of distant landmarks, also known as the global frame of reference. From previous experiments, it appears that birds and mammals that scatter hoard rely primarily on a global frame of reference, but this generalization depends on evidence from only a few species. Here we examined spatial memory in a previously unstudied scatter hoarder, the southern flying squirrel. We dissociated the relative weighting of three potential spatial strategies (beacon, global, or relative array strategy) with three probe tests: transposition of beacon and the rotation or the expansion of the array. The squirrels’ choices were consistent with a spatial averaging strategy, where they chose the location dictated by at least two of the three strategies, rather than using a single preferred frame of reference. This adaptive and flexible heuristic has not been previously described in animal orientation studies, yet it may be a common solution to the universal problem of encoding and recalling spatial locations in an ephemeral physical landscape.  相似文献   
188.
Although it is well known that frugivorous spider monkeys (Ateles geoffroyi yucatanensis) occupy large home ranges, travelling long distances to reach highly productive resources, little is known of how they move between feeding sites. A 11 month study of spider monkey ranging patterns was carried out at the Otochma’ax Yetel Kooh reserve, Yucatán, Mexico. We followed single individuals for as long as possible each day and recorded the routes travelled with the help of a GPS (Global Positioning System) device; the 11 independently moving individuals of a group were targeted as focal subjects. Travel paths were composed of highly linear segments, each typically ending at a place where some resource was exploited. Linearity of segments did not differ between individuals, and most of the highly linear paths that led to food resources were much longer than the estimate visibility in the woodland canopy. Monkeys do not generally continue in the same ranging direction after exploiting a resource: travel paths are likely to deviate at the site of resource exploitation rather than between such sites. However, during the harshest months of the year consecutive route segments were more likely to retain the same direction of overall movement. Together, these findings suggest that while moving between feeding sites, spider monkeys use spatial memory to guide travel, and even plan more than one resource site in advance. This contribution is part of the special issue “A Socioecological Perspective on Primate Cognition” (Cunningham and Janson 2007).  相似文献   
189.
Yaski O  Eilam D 《Animal cognition》2007,10(4):415-428
This study was aimed at uncovering physical and geometric properties that make a particular landmark a target of exploration and navigation. Rats were tested in a square open-field arena with additional portable corners featuring the same properties as the arena corners. It was found that the routes of progression converged upon the added corners, whether located at the arena wall or the arena center. Route convergence upon the added corners involved numerous visits to these corners. However, time spent at the added corners was relatively short compared with the arena corners, including that from which rats were introduced into the arena. There was no differential effect of testing rats in light or dark, or with a low versus a high portable corner. It is suggested that the added corners were distinct against the background of the arena enclosure, whereas the four arena corners and walls were encoded by the rats as one geometric module. This distinctness, together with the greater accessibility of the added corners, made them salient landmarks and a target of exploration. Thus, the impact of a landmark extended beyond its specific self-geometry to include accessibility and distinctness, which are contextual properties. In addition to the contextual impact on locomotor behavior there was also a temporal effect, with security initially dominating the rats’ behavior but then declining along with an increased attraction to salient landmarks. These spatiotemporal patterns characterized behavior in both lit and dark arenas, indicating that distal cues were secondary to local proximal cues in shaping routes.  相似文献   
190.
Rick Grush 《Synthese》2007,159(3):389-416
An attempt is made to defend a general approach to the spatial content of perception, an approach according to which perception is imbued with spatial content in virtue of certain kinds of connections between perceiving organism’s sensory input and its behavioral output. The most important aspect of the defense involves clearly distinguishing two kinds of perceptuo-behavioral skills—the formation of dispositions, and a capacity for emulation. The former, the formation of dispositions, is argued to by the central pivot of spatial content. I provide a neural information processing interpretation of what these dispositions amount to, and describe how dispositions, so understood, are an obvious implementation of Gareth Evans’ proposal on the topic. Furthermore, I describe what sorts of contribution are made by emulation mechanisms, and I also describe exactly how the emulation framework differs from similar but distinct notions with which it is often unhelpfully confused, such as sensorimotor contingencies and forward models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号