首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   3篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1987年   2篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
61.
62.
There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information‐theoretic analysis reveals how task‐relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science.  相似文献   
63.
This paper presents an optimized cuttlefish algorithm for feature selection based on the traditional cuttlefish algorithm, which can be used for diagnosis of Parkinson’s disease at its early stage. Parkinson is a central nervous system disorder, caused due to the loss of brain cells. Parkinson's disease is incurable and could eventually lead to death but medications can help to control symptoms and elongate the patient's life to some extent. The proposed model uses the traditional cuttlefish algorithm as a search strategy to ascertain the optimal subset of features. The decision tree and k-nearest neighbor classifier as a judgment on the selected features. The Parkinson speech with multiple types of sound recordings and Parkinson Handwriting sample’s datasets are used to evaluate the proposed model. The proposed algorithm can be used in predicting the Parkinson’s disease with an accuracy of approximately 94% and help individual to have proper treatment at early stage. The experimental result reveals that the proposed bio-inspired algorithm finds an optimal subset of features, maximizing the accuracy, minimizing number of features selected and is more stable.  相似文献   
64.
The cognitive and behavioral interventions can be as efficacious as antidepressant medications and more enduring, but some patients will be more likely to respond to one than the other. Recent work has focused on developing sophisticated selection algorithms using machine-learning approaches that answer the question, “What works best for whom?” Moreover, the vast majority of people suffering from depression reside in low- and middle-income countries where access to either psychotherapy or medications is virtually nonexistent. Great strides have been made in training nonspecialist providers (known as task sharing) to overcome this gap. Finally, recent work growing out of evolutionary psychology suggests that antidepressant medications may suppress symptoms at the expense of prolonging the underlying episode so as to increase the risk of relapse whenever someone tries to stop. We address each of these developments and their cumulative implications.  相似文献   
65.
Coecke  Bob 《Studia Logica》2002,70(3):411-440
In their seminal paper Birkhoff and von Neumann revealed the following dilemma:[ ] whereas for logicians the orthocomplementation properties of negation were the ones least able to withstand a critical analysis, the study of mechanics points to the distributive identities as the weakest link in the algebra of logic.In this paper we eliminate this dilemma, providing a way for maintaining both. Via the introduction of the "missing" disjunctions in the lattice of properties of a physical system while inheriting the meet as a conjunction we obtain a complete Heyting algebra of propositions on physical properties. In particular there is a bijective correspondence between property lattices and propositional lattices equipped with a so called operational resolution, an operation that exposes the properties on the level of the propositions. If the property lattice goes equipped with an orthocomplementation, then this bijective correspondence can be refined to one with propositional lattices equipped with an operational complementation, as such establishing the claim made above. Formally one rediscovers via physical and logical considerations as such respectively a specification and a refinement of the purely mathematical result by Bruns and Lakser (1970) on injective hulls of meet-semilattices. From our representation we can derive a truly intuitionistic functional implication on property lattices, as such confronting claims made in previous writings on the matter. We also make a detailed analysis of disjunctivity vs. distributivity and finitary vs. infinitary conjunctivity, we briefly review the Bruns-Lakser construction and indicate some questions which are left open.  相似文献   
66.
In this paper, linear structural equation models with latent variables are considered. It is shown how many common models arise from incomplete observation of a relatively simple system. Subclasses of models with conditional independence interpretations are also discussed. Using an incomplete data point of view, the relationships between the incomplete and complete data likelihoods, assuming normality, are highlighted. For computing maximum likelihood estimates, the EM algorithm and alternatives are surveyed. For the alternative algorithms, simplified expressions for computing function values and derivatives are given. Likelihood ratio tests based on complete and incomplete data are related, and an example on using their relationship to improve the fit of a model is given.This research forms part of the author's doctoral thesis and was supported by a Commonwealth Postgraduate Research Award. The author also wishes to acknowledge the support of CSIRO during the preparation of this paper and the referees' comments which led to substantial improvements.  相似文献   
67.
Multitrait-Multimethod (MTMM) matrices are often analyzed by means of confirmatory factor analysis (CFA). However, fitting MTMM models often leads to improper solutions, or non-convergence. In an attempt to overcome these problems, various alternative CFA models have been proposed, but with none of these the problem of finding improper solutions was solved completely. In the present paper, an approach is proposed where improper solutions are ruled out altogether and convergence is guaranteed. The approach is based on constrained variants of components analysis (CA). Besides the fact that these methods do not give improper solutions, they have the advantage that they provide component scores which can later on be used to relate the components to external variables. The new methods are illustrated by means of simulated data, as well as empirical data sets.This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences to the first author. The authors are obliged to three anonymous reviewers and an associate editor for constructive suggestions on the first version of this paper.  相似文献   
68.
69.
Two fundamental categories of any ontology are the category of objects and the category of universals. We discuss the question whether either of these categories can be infinite or not. In the category of objects, the subcategory of physical objects is examined within the context of different cosmological theories regarding the different kinds of fundamental objects in the universe. Abstract objects are discussed in terms of sets and the intensional objects of conceptual realism. The category of universals is discussed in terms of the three major theories of universals: nominalism, realism, and conceptualism. The finitude of mind pertains only to conceptualism. We consider the question of whether or not this finitude precludes impredicative concept formation. An explication of potential infinity, especially as applied to concepts and expressions, is given. We also briefly discuss a logic of plural objects, or groups of single objects (individuals), which is based on Bertrand Russell’s (1903, The principles of mathematics, 2nd edn. (1938). Norton & Co, NY) notion of a class as many. The universal class as many does not exist in this logic if there are two or more single objects; but the issue is undecided if there is just one individual. We note that adding plural objects (groups) to an ontology with a countable infinity of individuals (single objects) does not generate an uncountable infinity of classes as many.
Nino B. CocchiarellaEmail:
  相似文献   
70.
There are at least two general theories for building probabilistic-dynamical systems: one is Markov theory and another is quantum theory. These two mathematical frameworks share many fundamental ideas, but they also differ in some key properties. On the one hand, Markov theory obeys the law of total probability, but quantum theory does not; on the other hand, quantum theory obeys the doubly stochastic law, but Markov theory does not. Therefore, the decision about whether to use a Markov or a quantum system depends on which of these laws are empirically obeyed in an application. This article derives two general methods for testing these theories that are parameter free, and presents a new experimental test. The article concludes with a review of experimental findings from cognitive psychology that evaluate these two properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号