全文获取类型
收费全文 | 87篇 |
免费 | 4篇 |
国内免费 | 3篇 |
专业分类
94篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 3篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 3篇 |
2014年 | 1篇 |
2013年 | 13篇 |
2012年 | 3篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 5篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2006年 | 7篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有94条查询结果,搜索用时 0 毫秒
51.
Filippo Gambarota;Gianmarco Altoè; 《International journal of psychology》2024,59(6):1263-1292
Ordinal data such as Likert items, ratings or generic ordered variables are widespread in psychology. These variables are usually analysed using metric models (e.g., standard linear regression) with important drawbacks in terms of statistical inference (reduced power and increased type-1 error) and prediction. One possible reason for not using ordinal regression models could be difficulty in understanding parameters or conducting a power analysis. The tutorial aims to present ordinal regression models using a simulation-based approach. Firstly, we introduced the general model highlighting crucial components and assumptions. Then, we explained how to interpret parameters for a logit and probit model. Then we proposed two ways for simulating data as a function of predictors showing a 2 × 2 interaction with categorical predictors and the interaction between a numeric and categorical predictor. Finally, we showed an example of power analysis using simulations that can be easily extended to complex models with multiple predictors. The tutorial is supported by a collection of custom R functions developed to simulate and understand ordinal regression models. The code to reproduce the proposed simulation, the custom R functions and additional examples of ordinal regression models can be found on the online Open Science Framework repository (https://osf.io/93h5j). 相似文献
52.
In a recent paper by Casasanto and Pitt (2019), the authors addressed a debate regarding the role of order and magnitude in SNARC and SNARC-like effects. Their position is that all these effects can be explained by order, while magnitude could only account for a subset of evidence. Although we agree that order can probably explain the majority of these effects, in this commentary we argue that magnitude is still relevant, since there is evidence that cannot be explained based on ordinality alone. We argue that SNARC-like effects can occur for magnitudes not clearly characterized by overlearned ordinality and that magnitude can prevail on order, when the two are pitted against each other. Finally, we propose that different interpretations of the role of order and magnitude depend on the interaction of stimulus properties and task demands. 相似文献
53.
对王弼解《易》的传统理解,学者多认为是"扫象"说。结合王弼《周易略例》和《周易注》进行分析,可以发现,这种看法明显偏颇。诚然,在解《易》的方法上,王弼主张"得意忘象",但他在解《易》过程中意在强调"象"的工具性和"意"的目的性。王弼此种解《易》路数并未"尽黜象数"。实际上,王弼对汉代以来之象数既有所扫,又有所保留。与其说王弼解《易》是"尽黜象数",不如说是"扫象阐理"。王弼"得意忘象"这一解《易》方法,开启了中国传统哲学对经典的解读思路,不但开义理解《易》之先河,也发宋明义理易学之先声。本文通过分析王弼解《易》的这一方法论内容与特点,进一步揭示其在中国哲学史与易学史上的理论意义。 相似文献
54.
Ebersbach M Luwel K Frick A Onghena P Verschaffel L 《Journal of experimental child psychology》2008,99(1):1-17
This experiment aimed to expand previous findings on the development of mental number representation. We tested the hypothesis that children's familiarity with numbers is directly reflected by the shape of their mental number line. This mental number line was expected to be linear as long as numbers lay within the range of numbers children were familiar with. Five- to 9-year-olds (N=78) estimated the positions of numbers on an external number line and additionally completed a counting assessment mirroring their familiarity with numbers. A segmented regression model consisting of two linear segments described number line estimations significantly better than a logarithmic or a simple linear model. Moreover, the change point between the two linear segments, indicating a change of discriminability between numbers, was significantly correlated with children's familiar number range. Findings are discussed in terms of the accumulator model, assuming a linear mental representation with scalar variability. 相似文献
55.
The Fibonacci Life‐Chart Method (FLCM) as a foundation for Carl Jung's theory of synchronicity
下载免费PDF全文

Robert G. Sacco 《The Journal of analytical psychology》2016,61(2):203-222
Since the scientific method requires events to be subject to controlled examination it would seem that synchronicities are not scientifically investigable. Jung speculated that because these incredible events are like the random sparks of a firefly they cannot be pinned down. However, doubting Jung's doubts, the author provides a possible method of elucidating these seemingly random and elusive events. The author draws on a new method, designated the Fibonacci Life‐Chart Method (FLCM), which categorizes phase transitions and Phi fractal scaling in human development based on the occurrence of Fibonacci numbers in biological cell division and self‐organizing systems. The FLCM offers an orientation towards psychological experience that may have relevance to Jung's theory of synchronicity in which connections are deemed to be intrinsically meaningful rather than demonstrable consequences of cause and effect. In such a model synchronistic events can be seen to be, as the self‐organizing system enlarges, manifestations of self‐organized critical moments and Phi fractal scaling. Recommendations for future studies include testing the results of the FLCM using case reports of synchronistic and spiritual experiences. 相似文献
56.
本文从《易》象数的角度来解释周敦颐的《太极图说》与《通书》,认为这种象数的“二对生”的区别性特征是周氏学说的内在发动结构,由此而提出一些很不同于流行的“宇宙论加上伦理学”的解释模式的思路。在一些被长久争论的问题上,比如“太极与无极的关系”、“太极与两仪的关系”、“诚与太极的关系”、“中与太极和诚的关系”,都提出了新的看法。在这新的理解方式中,周敦颐的《太极图说》就不止是程朱陆王的一个含糊的先导,而是融合了儒道释的思想精华,而又有着自己独特的思想原发力与中和的精微境界的划时代的哲理学说,其蕴义(比如超出理气二分的原本发生论)并未被后来的理学家们穷尽。本文最后将周敦颐的思想与西方的毕达哥拉斯及莱布尼兹的学说进行对比,一方面揭示“象数”在伟大的哲理传统中的关键作用,另一方面又表明中西两大传统之间存在的深刻差异在结构上的原因。 相似文献
57.
采用数字大小判断任务,探讨正负数混合呈现对负数SNARC效应的影响。结果发现,负数单独呈现条件下,负数出现反转的SNARC效应;负数和无加号正数混合呈现,且只对负数作反应条件下,负数有反转SNARC效应;负数和有加号正数混合呈现,且只对负数作反应条件下,负数出现反转SNARC效应;负数和无加号正数混合呈现,并对正负数分别作反应的条件下,负数有反转SNARC效应出现,而正数出现SNARC效应。说明负数空间表征受其绝对值大小的影响,绝对值较小的负数(-1、-2)表征在心理数字线的左侧,绝对值较大的负数(-8、-9)表征在数字线的右侧,且不能延伸至心理数字线左侧。 相似文献
58.
在数字自动加工研究中,已有研究的实验对象一般局限在小数量数字上,大数量数字加工中是否也存在自动激活现象尚未获得实验证据。本研究以大数量为研究对象,以Stroop效应和SNARC效应为自动加工的指标,实验一发现,无论是数字语义比较还是数字个数比较,都出现了典型的数字Stroop效应;实验二的结果表明,在大数量个数的比较任务中存在SNARC效应和顺序效应。由实验结果初步推断,在大数量加工中也存在无关维度数量信息的自动激活。 相似文献
59.
本研究采用数字线索提示的刺激探测任务, 通过三个实验探讨负数的低水平加工能否,以及怎样引起空间注意的转移。实验一探讨只有负数单独呈现作为线索时能否引起空间注意的转移。结果表明:对负数绝对值大小的加工能引起空间注意的转移。实验二进一步探讨在正数、负数和零混合作为线索时能否引起空间注意的转移。结果表明:对负数数量大小的加工能引起空间注意的转移。实验三再次用正数, 负数和0三种数字混合作为探测刺激前的线索, 但仅对负数和零作为提示线索之后的探测刺激进行反应, 又一次得到了由有效提示线索所引发的对数字数量大小加工引起的空间注意的转移。本研究表明, 对负数的低水平加工可以引起空间注意的转移, 然而, 是对绝对值的加工还是数量大小的加工引起注意转移依赖于共同参与的其它数字加工产生的影响。 相似文献
60.
Johannes Bloechle Stefan Huber Korbinian Moeller 《Journal of Cognitive Psychology》2015,27(4):478-489
The idea of embodied numerosity denotes that seemingly abstract number concepts (e.g., magnitude) are rooted in bodily experiences and situated action. In the present study we evaluated whether there is an embodied representation of the place–value structure of the Arabic number system and if so whether this representation is influenced by situated aspects. In a two-digit number magnitude comparison task participants had to directly touch the larger of two numbers. Importantly, pointing responses were systematically biased toward the decade digit of the target number. Additionally, this leftward bias towards the tens digit was reduced in unit–decade incompatible number pairs. Thereby, we demonstrated an influence of place–value processing on manual pointing movement. Our results therefore corroborate the notion of an embodied representation of the place–value structure of Arabic numbers which is modulated by situated aspects. 相似文献