首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   9篇
  国内免费   5篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   8篇
  2014年   10篇
  2013年   46篇
  2012年   2篇
  2011年   13篇
  2010年   4篇
  2009年   18篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   9篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
51.
Recent evidence indicated that fraction pair type determined whether a particular fraction is processed holistically, componentially or in a hybrid manner. Going beyond previous studies, we investigated how participants adapt their processing of fractions not only to fraction type, but also to experimental context. To examine adaptation in fraction processing, we recorded participants' eye-fixation behaviour in a fraction magnitude comparison task.  相似文献   
52.
Children apply various strategies to mentally solve multi-digit subtraction problems and the efficient use of some of them may depend more or less on numerical magnitude processing. For example, the indirect addition strategy (solving 72–67 as “how much do I have to add up to 67 to get 72?”), which is particularly efficient when the two given numbers are close to each other, requires to determine the proximity of these two numbers, a process that may depend on numerical magnitude processing. In the present study, children completed a numerical magnitude comparison task and a number line estimation task, both in a symbolic and nonsymbolic format, to measure their numerical magnitude processing. We administered a multi-digit subtraction task, in which half of the items were specifically designed to elicit indirect addition. Partial correlational analyses, controlling for intellectual ability and motor speed, revealed significant associations between numerical magnitude processing and mental multi-digit subtraction. Additional analyses indicated that numerical magnitude processing was particularly important for those items for which the use of indirect addition is expected to be most efficient. Although this association was observed for both symbolic and nonsymbolic tasks, the strongest associations were found for the symbolic format, and they seemed to be more prominent on numerical magnitude comparison than on number line estimation.  相似文献   
53.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   
54.
Several studies investigating the development of approximate number representations used the number-to-position task and reported evidence for a shift from a logarithmic to a linear representation of numerical magnitude with increasing age. However, this interpretation as well as the number-to-position method itself has been questioned recently. The current study tested 5- and 8-year-old children on a newly established numerosity production task to examine developmental changes in number representations and to test the idea of a representational shift. Modelling of the children's numerical estimations revealed that responses of the 8-year-old children approximate a simple positive linear relation between estimated and actual numbers. Interestingly, however, the estimations of the 5-year-old children were best described by a bilinear model reflecting a relatively accurate linear representation of small numbers and no apparent magnitude knowledge for large numbers. Taken together, our findings provide no support for a shift of mental representations from a logarithmic to a linear metric but rather suggest that the range of number words which are appropriately conceptualised and represented by linear analogue magnitude codes expands during development.  相似文献   
55.
56.
Recent research has suggested that the Pirahã, an Amazonian tribe with a number‐less language, are able to match quantities > 3 if the matching task does not require recall or spatial transposition. This finding contravenes previous work among the Pirahã. In this study, we re‐tested the Pirahãs’ performance in the crucial one‐to‐one matching task utilized in the two previous studies on their numerical cognition, as well as in control tasks requiring recall and mental transposition. We also conducted a novel quantity recognition task. Speakers were unable to consistently match quantities > 3, even when no recall or transposition was involved. We provide a plausible motivation for the disparate results previously obtained among the Pirahã. Our findings are consistent with the suggestion that the exact recognition of quantities > 3 requires number terminology.  相似文献   
57.
Low numerical probabilities tend to be directionally ambiguous, meaning they can be interpreted either positively, suggesting the occurrence of the target event, or negatively, suggesting its non-occurrence. High numerical probabilities, however, are typically interpreted positively. We argue that the greater directional ambiguity of low numerical probabilities may make them more susceptible than high probabilities to contextual influences. Results from five experiments supported this premise, with perceived base rate affecting the interpretation of an event’s numerical posterior probability more when it was low than high. The effect is consistent with a confirmatory hypothesis testing process, with the relevant perceived base rate suggesting the directional hypothesis which people then test in a confirmatory manner.  相似文献   
58.
This study investigated processing of number and extent in newborns. Using visual preference, we showed that newborns discriminated between small sets of dot collections relying solely on implicit numerical information when non-numerical continuous variables were strictly controlled (Experiment 1), and solely on continuous information when numerical variables were controlled (Experiment 2). When number and extent were pitted against each other (Experiment 3), newborns showed no visual preference, suggesting that the two variables play comparable roles in attracting newborns’ visual attention. In contrast to reports of dominance of continuous variables, these findings suggest that multiple dimensions attract newborns’ attention and guide their visual exploration.  相似文献   
59.
ABSTRACT

Current theoretical approaches suggest that mathematical anxiety (MA) manifests itself as a weakness in quantity manipulations. This study is the first to examine automatic versus intentional processing of numerical information using the numerical Stroop paradigm in participants with high MA. To manipulate anxiety levels, we combined the numerical Stroop task with an affective priming paradigm. We took a group of college students with high MA and compared their performance to a group of participants with low MA. Under low anxiety conditions (neutral priming), participants with high MA showed relatively intact number processing abilities. However, under high anxiety conditions (mathematical priming), participants with high MA showed (1) higher processing of the non-numerical irrelevant information, which aligns with the theoretical view regarding deficits in selective attention in anxiety and (2) an abnormal numerical distance effect. These results demonstrate that abnormal, basic numerical processing in MA is context related.  相似文献   
60.
Are different magnitudes, such as Arabic numerals, length and area, processed by the same system? Answering this question can shed light on the building blocks of our mathematical abilities. A shared representation theory suggested that discriminability of all magnitudes complies with Weber's law. The current work examined this suggestion. We employed comparative judgment tasks to investigate different types of comparisons — conceptual comparison of numbers, physical comparison of numbers and physical comparison of different shapes. We used 8 different size ratios and plotted reaction time as a function of these ratios. Our findings suggest that the relationship between discriminability and size ratio is not always linear, as previously suggested; rather, it is modulated by the type of comparison and the type of stimuli. Hence, we suggest that the representation of magnitude is not as rigid as previously suggested; it changes as a function of task demands and familiarity with the compared stimuli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号