首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   2篇
  国内免费   1篇
  669篇
  2024年   2篇
  2023年   8篇
  2022年   25篇
  2021年   22篇
  2020年   37篇
  2019年   53篇
  2018年   19篇
  2017年   33篇
  2016年   59篇
  2015年   58篇
  2014年   52篇
  2013年   66篇
  2012年   12篇
  2011年   48篇
  2010年   23篇
  2009年   27篇
  2008年   26篇
  2007年   21篇
  2006年   11篇
  2005年   15篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有669条查询结果,搜索用时 0 毫秒
601.
According to Damasio’s somatic marker hypothesis, emotions are generated by conveying the current state of the body to the brain through interoceptive and proprioceptive afferent input. The resulting brain activation patterns represent unconscious emotions and correlate with subjective feelings. This proposition implies a corollary that the deliberate control of motor behavior could regulate feelings. We tested this possibility, hypothesizing that engaging in movements associated with a certain emotion would enhance that emotion and/or the corresponding valence. Furthermore, because motor imagery and observation are thought to activate the same mirror-neuron network engaged during motor execution, they might also activate the same emotional processing circuits, leading to similar emotional effects. Therefore, we measured the effects of motor execution, motor imagery and observation of whole-body dynamic expressions of emotions (happiness, sadness, fear) on affective state. All three tasks enhanced the corresponding affective state, indicating their potential to regulate emotions.  相似文献   
602.
This study evaluated hand asymmetries in performance of a dexterous, controlled task under haptic feedback. Participants punctured a virtual membrane with a pushing or pulling movement, using the left or right hand. For pulling movements, the dominant (right) hand exhibited faster average stopping latency and shorter skidding distance. When the kinematic data were fit to a three-phase model previously applied to this task (Klatzky et al., 2013), the right hand exhibited faster force decay attributable to biomechanical factors. Analyses of the aggregated performance measures and model parameters showed that the left and right hands are associated with two different distributions, supporting handedness effects. Furthermore, while the majority of participants expressed right-hand dominance, which was consistent with their self-reported hand preferences, others showed partial or no dominance. This approach could potentially be extended to quantify and differentiate individuals with difficulties in manual behavior due to abnormal motor control (e.g., dyspraxia), progressive deterioration (e.g., Parkinson's syndrome) or improvement (neural regrowth after transplant).  相似文献   
603.
Stevens JA 《Cognition》2005,95(3):329-350
Four experiments were completed to characterize the utilization of visual imagery and motor imagery during the mental representation of human action. In Experiment 1, movement time functions for a motor imagery human locomotion task conformed to a speed-accuracy trade-off similar to Fitts' Law, whereas those for a visual imagery object motion task did not. However, modality-specific interference effects in Experiment 2 demonstrate visual and motor imagery as cooperative processes when the action represented is tied to visual coordinates in space. Biomechanic-specific motor interference effects found in Experiment 3 suggest one basis for separation of processing channels within motor imagery. Finally, in Experiment 4 representations of motor actions were found to be generated using only visual imagery under certain circumstances: namely, when the imaginer represented the motor action of another individual while placed at an opposing viewpoint. These results suggest that the modality of representation recruited to generate images of human action is dependent on the dynamic relationship between the individual, movement, and environment.  相似文献   
604.
Environmental enrichment paradigms that incorporate cognitive stimulation, exercise, and motor learning benefit memory and synaptic plasticity across the rodent lifespan. However, the contribution each individual element of the enriched environment makes to enhancing memory and synaptic plasticity has yet to be delineated. Therefore, the current study tested the effects of three of these elements on memory and synaptic protein levels. Young female C57BL/6 mice were given 3h of daily exposure to either rodent toys (cognitive stimulation) or running wheels (exercise), or daily acrobatic training for 6 weeks prior to and throughout behavioral testing. Controls were group housed, but did not receive enrichment. Spatial working and reference memory were tested in a water-escape motivated radial arm maze. Levels of the presynaptic protein synaptophysin were then measured in frontoparietal cortex, hippocampus, striatum, and cerebellum. Exercise, but not cognitive stimulation or acrobat training, improved spatial working memory relative to controls, despite the fact that both exercise and cognitive stimulation increased synaptophysin levels in the neocortex and hippocampus. These data suggest that exercise alone is sufficient to improve working memory, and that enrichment-induced increases in synaptophysin levels may not be sufficient to improve working memory in young females. Spatial reference memory was unaffected by enrichment. Acrobat training had no effect on memory or synaptophysin levels, suggesting a minimal contribution of motor learning to the mnemonic and neuronal benefits of enrichment. These results provide the first evidence that different elements of the enriched environment have markedly distinct effects on spatial memory and synaptic alterations.  相似文献   
605.
Reliable sensory-motor integration is a pre-requisite for optimal movement control; the functionality of this integration changes during development. Previous research has shown that motor performance of school-age children is characterized by higher variability, particularly under conditions where vision is not available, and movement planning and control is largely based on kinesthetic input. The purpose of the current study was to determine the characteristics of how kinesthetic-motor internal representations interact with visuo-motor representations during development. To this end, we induced a visuo-motor adaptation in 59 children, ranging from 5 to 12 years of age, as well as in a group of adults, and measured initial directional error (IDE) and endpoint error (EPE) during a subsequent condition where visual feedback was not available, and participants had to rely on kinesthetic input. Our results show that older children (age range 9–12 years) de-adapted significantly more than younger children (age range 5–8 years) over the course of 36 trials in the absence of vision, suggesting that the kinesthetic-motor internal representation in the older children was utilized more efficiently to guide hand movements, and was comparable to the performance of the adults.  相似文献   
606.
为了分析我国道路交通事故是否与阻塞性睡眠呼吸暂停相关,以道路交通事故为主题查阅1993年~2012年万方数据库,并辅以手检同期《中华创伤杂志》和《中华流行病学杂志》,重点查阅全国性及地区性道路交通事故原因的论著,看其是否涉及阻塞性睡眠呼吸暂停问题。结果显示这期间共发表了相关论著43篇,全部论文在分析道路交通事故时均未提及阻塞性睡眠呼吸暂停这一重要原因,提示国内道路交通安全研究中忽略了一个与之关系密切的阻塞性睡眠呼吸暂停问题,建议今后将这个问题引入到道路交通安全管理项目中。  相似文献   
607.
This investigation examined the visuomotor tracking abilities of persons with apraxia of speech (AOS) or conduction aphasia (CA). In addition, tracking performance was correlated with perceptual judgments of speech accuracy. Five individuals with AOS and four with CA served as participants, as well as an equal number of healthy controls matched by age and gender. Participants tracked predictable (sinusoidal) and unpredictable signals using jaw and lip movements transduced with strain gauges. Tracking performance in participants with AOS was poorest for predictable signals, with decreased kinematic measures of cross-correlation and gain ratio and increased target-tracker difference. In contrast, tracking of the unpredictable signal by participants with AOS was performed as well as for other groups (e.g. participants with CA, healthy controls). Performance of the subjects with AOS on the predictable tracking task was found to strongly correlate with perceptual judgments of speech. These findings suggest that motor control capabilities are impaired in AOS, but not in CA. Results suggest that AOS has its basis in motor programming deficits, not impaired motor execution.  相似文献   
608.
The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow predictions (estimates) about the mapping of the self to parameters of the external world; processes that enable successful planning and execution of action. The ability to mentally represent action is important to the development of motor control. This paper presents a critical review of motor imagery research conducted with children (typically developing and special populations) with focus on its merits and possible shortcomings in studying action representation. Included in the review are age-related findings, possible brain structures involved, experimental paradigms, and recommendations for future work. The merits of this review are associated with the apparent increasing attraction for using and studying motor imagery to understand the developmental aspects of action processing in children.  相似文献   
609.
本研究考察了道路交通标志中路名信息对称结构效应的眼动模式。实验采用眼动跟踪技术和视觉搜索范式,共有16名被试参加。实验结果表明:(1)在对称结构路名信息的视觉搜索中,被试的反应正确率明显优于非对称结构条件下的正确率;(2)对称结构条件下,被试的注视点和回扫次数明显较少,凝视时间明显较短;(3)在以道路交通标志为视觉搜索材料时,搜索区有无路名目标对视觉搜索绩效没有影响。可以认为:在道路交通标志中存在对称结构效应;眼动模式的差异是引起对称结构效应的认知机制。  相似文献   
610.
The effectiveness of motor imagery training on cognitive performance was examined and the physiological mechanisms involved in the contribution of mental practice to motor learning were considered. The subject's mental effort during motor imagery was assessed by using psychophysiological measures and particularly eye blink activity as an 'indirect' measurement of subjects' attention. An electronic flight simulation program (Multiple Attribute Task Battery--MATB) was used to assess performance. Twenty healthy volunteers participated in the study divided in two groups: the control group and the imagery-training group. The subjects of the imagery group were asked for additional imagery training. The subjects of the actual performing group were asked additionally to passively observe the task in order to have equal time of exposure to the task. Performance scores and physiological parameters such as heart rate, respiratory rate, eye blinking activity and muscular activity were recorded during all sessions. The results revealed significantly higher performance level of the imagery-training group than the control group. Heart rate and respiratory rate significantly increased during imagery sessions compared to rest. A slight electromyographic activity was observed during the imagination of movement. Our findings support the notion that mental practice improves motor performance in a task where spatiotemporal or dynamic control of the action is highly required. The effects of mental practice on motor performance could be explained by the existence of a top-down mechanism based on the activation of a central representation of the movements, since the vegetative activation during motor imagery seems to be centrally controlled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号